Displaying publications 1721 - 1740 of 9863 in total

Abstract:
Sort:
  1. Lim KT, Shukor MY, Wasoh H
    Biomed Res Int, 2014;2014:503784.
    PMID: 24696853 DOI: 10.1155/2014/503784
    Arsenic is a toxic metalloid which is widely distributed in nature. It is normally present as arsenate under oxic conditions while arsenite is predominant under reducing condition. The major discharges of arsenic in the environment are mainly due to natural sources such as aquifers and anthropogenic sources. It is known that arsenite salts are more toxic than arsenate as it binds with vicinal thiols in pyruvate dehydrogenase while arsenate inhibits the oxidative phosphorylation process. The common mechanisms for arsenic detoxification are uptaken by phosphate transporters, aquaglyceroporins, and active extrusion system and reduced by arsenate reductases via dissimilatory reduction mechanism. Some species of autotrophic and heterotrophic microorganisms use arsenic oxyanions for their regeneration of energy. Certain species of microorganisms are able to use arsenate as their nutrient in respiratory process. Detoxification operons are a common form of arsenic resistance in microorganisms. Hence, the use of bioremediation could be an effective and economic way to reduce this pollutant from the environment.
    Matched MeSH terms: Environmental Restoration and Remediation/methods*
  2. Al-Baldawi IA, Sheikh Abdullah SR, Abu Hasan H, Suja F, Anuar N, Mushrifah I
    J Environ Manage, 2014 Jul 1;140:152-9.
    PMID: 24762527 DOI: 10.1016/j.jenvman.2014.03.007
    This study investigated the optimum conditions for total petroleum hydrocarbon (TPH) removal from diesel-contaminated water using phytoremediation treatment with Scirpus grossus. In addition, TPH removal from sand was adopted as a second response. The optimum conditions for maximum TPH removal were determined through a Box-Behnken Design. Three operational variables, i.e. diesel concentration (0.1, 0.175, 0.25% Vdiesel/Vwater), aeration rate (0, 1 and 2 L/min) and retention time (14, 43 and 72 days), were investigated by setting TPH removal and diesel concentration as the maximum, retention time within the given range, and aeration rate as the minimum. The optimum conditions were found to be a diesel concentration of 0.25% (Vdiesel/Vwater), a retention time of 63 days and no aeration with an estimated maximum TPH removal from water and sand of 76.3 and 56.5%, respectively. From a validation test of the optimum conditions, it was found that the maximum TPH removal from contaminated water and sand was 72.5 and 59%, respectively, which was a 5 and 4.4% deviation from the values given by the Box-Behnken Design, providing evidence that S. grossus is a Malaysian native plant that can be used to remediate wastewater containing hydrocarbons.
    Matched MeSH terms: Water Purification/methods
  3. Aggelis DG, Alver N, Chai HK
    ScientificWorldJournal, 2014;2014:435238.
    PMID: 24701167 DOI: 10.1155/2014/435238
    Matched MeSH terms: Environmental Monitoring/methods
  4. Othman J, Khee PC
    Waste Manag Res, 2014 May;32(5):454-7.
    PMID: 24595362 DOI: 10.1177/0734242X14523662
    A choice experiment analysis was conducted to estimate the preference for specific waste disposal technologies in Malaysia. The study found that there were no significant differences between the choice of a sanitary landfill or an incinerator. What matters is whether any disposal technology would lead to obvious social benefits. A waste disposal plan which is well linked or integrated with the community will ensure its acceptance. Local authorities will be challenged to identify solid waste disposal sites that are technically appropriate and also socially desirable.
    Matched MeSH terms: Refuse Disposal/methods*
  5. Akbari E, Buntat Z, Ahmad MH, Enzevaee A, Yousof R, Iqbal SM, et al.
    Sensors (Basel), 2014;14(3):5502-15.
    PMID: 24658617 DOI: 10.3390/s140305502
    Carbon Nanotubes (CNTs) are generally nano-scale tubes comprising a network of carbon atoms in a cylindrical setting that compared with silicon counterparts present outstanding characteristics such as high mechanical strength, high sensing capability and large surface-to-volume ratio. These characteristics, in addition to the fact that CNTs experience changes in their electrical conductance when exposed to different gases, make them appropriate candidates for use in sensing/measuring applications such as gas detection devices. In this research, a model for a Field Effect Transistor (FET)-based structure has been developed as a platform for a gas detection sensor in which the CNT conductance change resulting from the chemical reaction between NH3 and CNT has been employed to model the sensing mechanism with proposed sensing parameters. The research implements the same FET-based structure as in the work of Peng et al. on nanotube-based NH3 gas detection. With respect to this conductance change, the I-V characteristic of the CNT is investigated. Finally, a comparative study shows satisfactory agreement between the proposed model and the experimental data from the mentioned research.
    Matched MeSH terms: Nanotechnology/methods*
  6. Dabbagh A, Abdullah BJ, Ramasindarum C, Abu Kasim NH
    Ultrason Imaging, 2014 Oct;36(4):291-316.
    PMID: 24626566 DOI: 10.1177/0161734614526372
    Tissue-mimicking phantoms that are currently available for routine biomedical applications may not be suitable for high-temperature experiments or calibration of thermal modalities. Therefore, design and fabrication of customized thermal phantoms with tailored properties are necessary for thermal therapy studies. A multitude of thermal phantoms have been developed in liquid, solid, and gel forms to simulate biological tissues in thermal therapy experiments. This article is an attempt to outline the various materials and techniques used to prepare thermal phantoms in the gel state. The relevant thermal, electrical, acoustic, and optical properties of these phantoms are presented in detail and the benefits and shortcomings of each type are discussed. This review could assist the researchers in the selection of appropriate phantom recipes for their in vitro study of thermal modalities and highlight the limitations of current phantom recipes that remain to be addressed in further studies.
    Matched MeSH terms: Hyperthermia, Induced/methods*
  7. Ayob AH, Freixanet J
    Eval Program Plann, 2014 Oct;46:38-46.
    PMID: 24907593 DOI: 10.1016/j.evalprogplan.2014.05.005
    This study evaluates the impact of public export promotion programs (EPPs) among small and medium-sized enterprises (SMEs) in Malaysia. Three indicators, level of awareness, frequency of use, and perception of usefulness, were examined according to a firm's export status. The global evaluation suggests that exporters are more frequent users of EPPs and perceive them to be more useful than non-exporters. Nonetheless, both groups demonstrate higher levels of awareness, are frequent users, and perceive the programs relating to export info/knowledge are more usefulness than programs relating to financial assistance. Further analysis also reveals that the frequency of use and the perception of usefulness for most programs are positively related to export experience, but not to export turnover. This study offers insights into the effectiveness of export programs for encouraging export initiation and expansion in an emerging economy.
    Matched MeSH terms: Program Evaluation/methods*
  8. Hannan MA, Zaila WA, Arebey M, Begum RA, Basri H
    Environ Monit Assess, 2014 Sep;186(9):5381-91.
    PMID: 24829160 DOI: 10.1007/s10661-014-3786-6
    This paper deals with the solid waste image detection and classification to detect and classify the solid waste bin level. To do so, Hough transform techniques is used for feature extraction to identify the line detection based on image's gradient field. The feedforward neural network (FFNN) model is used to classify the level content of solid waste based on learning concept. Numbers of training have been performed using FFNN to learn and match the targets of the testing images to compute the sum squared error with the performance goal met. The images for each class are used as input samples for classification. Result from the neural network and the rules decision are used to build the receiver operating characteristic (ROC) graph. Decision graph shows the performance of the system waste system based on area under curve (AUC), WS-class reached 0.9875 for excellent result and WS-grade reached 0.8293 for good result. The system has been successfully designated with the motivation of solid waste bin monitoring system that can applied to a wide variety of local municipal authorities system.
    Matched MeSH terms: Refuse Disposal/methods*
  9. Khan N, Choi JY, Nho EY, Jamila N, Habte G, Hong JH, et al.
    Food Chem, 2014 Sep 1;158:200-6.
    PMID: 24731332 DOI: 10.1016/j.foodchem.2014.02.103
    This study aimed at analyzing the concentrations of 23 minor and trace elements in aromatic spices by inductively coupled plasma-mass spectrometry (ICP-MS), after wet digestion by microwave system. The analytical method was validated by linearity, detection limits, precision, accuracy and recovery experiments, obtaining satisfactory values in all cases. Results indicated the presence of variable amounts of both minor and trace elements in the selected aromatic spices. Manganese was high in cinnamon (879.8 μg/g) followed by cardamom (758.1 μg/g) and clove (649.9 μg/g), strontium and zinc were high in ajwain (489.9 μg/g and 84.95 μg/g, respectively), while copper was high in mango powder (77.68 μg/g). On the whole some of the minor and essential trace elements were found to have good nutritional contribution in accordance to RDA. The levels of toxic trace elements, including As, Cd, and Pb were very low and did not found to pose any threat to consumers.
    Matched MeSH terms: Mass Spectrometry/methods*
  10. Dahimi O, Rahim AA, Abdulkarim SM, Hassan MS, Hashari SB, Mashitoh AS, et al.
    Food Chem, 2014 Sep 1;158:132-8.
    PMID: 24731324 DOI: 10.1016/j.foodchem.2014.02.087
    The adulteration of edible fats is a kind of fraud that impairs the physical and chemical features of the original lipid materials. It has been detected in various food, pharmaceutical and cosmeceutical products. Differential scanning calorimetry (DSC) is the robust thermo-analytical machine that permits to fingerprint the primary crystallisation of triacylglycerols (TAGs) molecules and their transition behaviours. The aims of this study was to assess the cross-contamination caused by lard concentration of 0.5-5% in the mixture systems containing beef tallow (BT) and chicken fat (CF) separately. TAGs species of pure and adulterated lipids in relation to their crystallisation and melting parameters were studied using principal components analysis (PCA). The results showed that by using the heating profiles the discrimination of LD from BT and CF was very clear even at low dose of less than 1%. Same observation was depicted from the crystallisation profiles of BT adulterated by LD doses ranging from 0.1% to 1% and from 2% to 5%, respectively. Furthermore, CF adulterated with LD did not exhibit clear changes on its crystallisation profiles. Consequently, DSC coupled with PCA is one of the techniques that might use to monitor and differentiate the minimum adulteration levels caused by LD in different animal fats.
    Matched MeSH terms: Calorimetry, Differential Scanning/methods*
  11. Sepucha KR, Matlock DD, Wills CE, Ropka M, Joseph-Williams N, Stacey D, et al.
    Med Decis Making, 2014 07;34(5):560-6.
    PMID: 24713692 DOI: 10.1177/0272989X14528381
    BACKGROUND: This review systematically appraises the quality of reporting of measures used in trials to evaluate the effectiveness of patient decision aids (PtDAs) and presents recommendations for minimum reporting standards.

    METHODS: We reviewed measures of decision quality and decision process in 86 randomized controlled trials (RCTs) from the 2011 Cochrane Collaboration systematic review of PtDAs. Data on development of the measures, reliability, validity, responsiveness, precision, interpretability, feasibility, and acceptability were independently abstracted by 2 reviewers.

    RESULTS: Information from 178 instances of use of measures was abstracted. Very few studies reported data on the performance of measures, with reliability (21%) and validity (16%) being the most common. Studies using new measures were less likely to include information about their psychometric performance. The review was limited to reporting of measures in studies included in the Cochrane review and did not consult prior publications.

    CONCLUSIONS: Very little is reported about the development or performance of measures used to evaluate the effectiveness of PtDAs in published trials. Minimum reporting standards are proposed to enable authors to prepare study reports, editors and reviewers to evaluate submitted papers, and readers to appraise published studies.

    Matched MeSH terms: Patient Participation/methods*
  12. Müller AM, Khoo S
    PMID: 24612748 DOI: 10.1186/1479-5868-11-35
    Physical activity is effective in preventing chronic diseases, increasing quality of life and promoting general health in older adults, but most older adults are not sufficiently active to gain those benefits. A novel and economically viable way to promote physical activity in older adults is through non-face-to-face interventions. These are conducted with reduced or no in-person interaction between intervention provider and program participants. The aim of this review was to summarize the scientific literature on non-face-to-face physical activity interventions targeting healthy, community dwelling older adults (≥ 50 years). A systematic search in six databases was conducted by combining multiple key words of the three main search categories "physical activity", "media" and "older adults". The search was restricted to English language articles published between 1st January 2000 and 31st May 2013. Reference lists of relevant articles were screened for additional publications. Seventeen articles describing sixteen non-face-to-face physical activity interventions were included in the review. All studies were conducted in developed countries, and eleven were randomized controlled trials. Sample size ranged from 31 to 2503 participants, and 13 studies included 60% or more women. Interventions were most frequently delivered via print materials and phone (n=11), compared to internet (n=3) and other media (n=2). Every intervention was theoretically framed with the Social Cognitive Theory (n=10) and the Transtheoretical Model of Behavior Change (n=6) applied mostly. Individual tailoring was reported in 15 studies. Physical activity levels were self-assessed in all studies. Fourteen studies reported significant increase in physical activity. Eight out of nine studies conducted post-intervention follow-up analysis found that physical activity was maintained over a longer time. In the six studies where intervention dose was assessed the results varied considerably. One study reported that 98% of the sample read the respective intervention newsletters, whereas another study found that only 4% of its participants visited the intervention website more than once. From this review, non-face-to-face physical activity interventions effectively promote physical activity in older adults. Future research should target diverse older adult populations in multiple regions while also exploring the potential of emerging technologies.
    Matched MeSH terms: Health Promotion/methods*
  13. Izzati WA, Arief YZ, Adzis Z, Shafanizam M
    ScientificWorldJournal, 2014;2014:735070.
    PMID: 24558326 DOI: 10.1155/2014/735070
    Polymer nanocomposites have recently been attracting attention among researchers in electrical insulating applications from energy storage to power delivery. However, partial discharge has always been a predecessor to major faults and problems in this field. In addition, there is a lot more to explore, as neither the partial discharge characteristic in nanocomposites nor their electrical properties are clearly understood. By adding a small amount of weight percentage (wt%) of nanofillers, the physical, mechanical, and electrical properties of polymers can be greatly enhanced. For instance, nanofillers in nanocomposites such as silica (SiO2), alumina (Al2O3) and titania (TiO2) play a big role in providing a good approach to increasing the dielectric breakdown strength and partial discharge resistance of nanocomposites. Such polymer nanocomposites will be reviewed thoroughly in this paper, with the different experimental and analytical techniques used in previous studies. This paper also provides an academic review about partial discharge in polymer nanocomposites used as electrical insulating material from previous research, covering aspects of preparation, characteristics of the nanocomposite based on experimental works, application in power systems, methods and techniques of experiment and analysis, and future trends.
    Matched MeSH terms: Materials Testing/methods*
  14. Ahirwal MK, Kumar A, Singh GK
    IEEE/ACM Trans Comput Biol Bioinform, 2013 Nov-Dec;10(6):1491-504.
    PMID: 24407307 DOI: 10.1109/TCBB.2013.119
    This paper explores the migration of adaptive filtering with swarm intelligence/evolutionary techniques employed in the field of electroencephalogram/event-related potential noise cancellation or extraction. A new approach is proposed in the form of controlled search space to stabilize the randomness of swarm intelligence techniques especially for the EEG signal. Swarm-based algorithms such as Particles Swarm Optimization, Artificial Bee Colony, and Cuckoo Optimization Algorithm with their variants are implemented to design optimized adaptive noise canceler. The proposed controlled search space technique is tested on each of the swarm intelligence techniques and is found to be more accurate and powerful. Adaptive noise canceler with traditional algorithms such as least-mean-square, normalized least-mean-square, and recursive least-mean-square algorithms are also implemented to compare the results. ERP signals such as simulated visual evoked potential, real visual evoked potential, and real sensorimotor evoked potential are used, due to their physiological importance in various EEG studies. Average computational time and shape measures of evolutionary techniques are observed 8.21E-01 sec and 1.73E-01, respectively. Though, traditional algorithms take negligible time consumption, but are unable to offer good shape preservation of ERP, noticed as average computational time and shape measure difference, 1.41E-02 sec and 2.60E+00, respectively.
    Matched MeSH terms: Electroencephalography/methods*
  15. Zamzuri NA, Abd-Aziz S, Rahim RA, Phang LY, Alitheen NB, Maeda T
    J Appl Microbiol, 2014 Apr;116(4):903-10.
    PMID: 24314059 DOI: 10.1111/jam.12410
    To isolate a bacterial strain capable of biotransforming ferulic acid, a major component of lignin, into vanillin and vanillic acid by a rapid colorimetric screening method.
    Matched MeSH terms: Colorimetry/methods*
  16. Pandurangan AK, Esa NM
    Asian Pac J Cancer Prev, 2013;14(10):5543-52.
    PMID: 24289544
    Colorectal cancer (CRC), a complex multi-step process involving progressive disruption of homeostatic mechanisms controlling intestinal epithelial proliferation/inflammation, differentiation, and programmed cell death, is the third most common malignant neoplasm worldwide. A number of promising targets such as inducible nitric acid (iNOS), cyclooxygenase (COX)-2, NF-E2-related factor 2 (Nrf2), Wnt/β-catenin, Notch and apoptotic signaling have been identified by researchers as useful targets to prevent or therapeutically inhibit colon cancer development. In this review article, we aimed to explore the current targets available to eliminate colon cancer with an update of dietary and non-nutritional compounds that could be of potential use for interaction with regulatory molecules to prevent CRC.
    Matched MeSH terms: Diet/methods
  17. Harun R, Yip JW, Thiruvenkadam S, Ghani WA, Cherrington T, Danquah MK
    Biotechnol J, 2014 Jan;9(1):73-86.
    PMID: 24227697 DOI: 10.1002/biot.201200353
    The continuous growth in global population and the ongoing development of countries such as China and India have contributed to a rapid increase in worldwide energy demand. Fossil fuels such as oil and gas are finite resources, and their current rate of consumption cannot be sustained. This, coupled with fossil fuels' role as pollutants and their contribution to global warming, has led to increased interest in alternative sources of energy production. Bioethanol, presently produced from energy crops, is one such promising alternative future energy source and much research is underway in optimizing its production. The economic and temporal constraints that crop feedstocks pose are the main downfalls in terms of the commercial viability of bioethanol production. As an alternative to crop feedstocks, significant research efforts have been put into utilizing algal biomass as a feedstock for bioethanol production. Whilst the overall process can vary, the conversion of biomass to bioethanol usually contains the following steps: (i) pretreatment of feedstock; (ii) hydrolysis; and (iii) fermentation of bioethanol. This paper reviews different technologies utilized in the pretreatment and fermentation steps, and critically assesses their applicability to bioethanol production from algal biomass. Two different established fermentation routes, single-stage fermentation and two-stage gasification/fermentation processes, are discussed. The viability of algal biomass as an alternative feedstock has been assessed adequately, and further research optimisation must be guided toward the development of cost-effective scalable methods to produce high bioethanol yield under optimum economy.
    Matched MeSH terms: Biotechnology/methods*
  18. Ahamed NU, Sundaraj K, Ahmad B, Rahman M, Ali MA, Islam MA
    Australas Phys Eng Sci Med, 2014 Mar;37(1):83-95.
    PMID: 24477560 DOI: 10.1007/s13246-014-0245-1
    Cricket bowling generates forces with torques on the upper limb muscles and makes the biceps brachii (BB) muscle vulnerable to overuse injury. The aim of this study was to investigate whether there are differences in the amplitude of the EMG signal of the BB muscle during fast and spin delivery, during the seven phases of both types of bowling and the kinesiological interpretation of the bowling arm for muscle contraction mechanisms during bowling. A group of 16 male amateur bowlers participated in this study, among them 8 fast bowlers (FB) and 8 spin bowlers (SB). The root mean square (EMGRMS), the average sEMG (EMGAVG), the maximum peak amplitude (EMGpeak), and the variability of the signal were calculated using the coefficient of variance (EMGCV) from the BB muscle of each bowler (FB and SB) during each bowling phase. The results demonstrate that, (i) the BB muscle is more active during FB than during SB, (ii) the point of ball release and follow-through generated higher signals than the other five movements during both bowling categories, (iii) the BB muscle variability is higher during SB compared with FB, (iv) four statistically significant differences (p<0.05) found between the bowling phases in fast bowling and three in spin bowling, and (v) several arm mechanics occurred for muscle contraction. There are possible clinical significances from the outcomes; like, recurring dynamic contractions on BB muscle can facilitate to clarify the maximum occurrence of shoulder pain as well as biceps tendonitis those are medically observed in professional cricket bowlers, and treatment methods with specific injury prevention programmes should focus on the different bowling phases with the maximum muscle effect. Finally, these considerations will be of particular importance in assessing different physical therapy on bowler's muscle which can improve the ball delivery performance and stability of cricket bowlers.
    Matched MeSH terms: Electromyography/methods*
  19. Koohpeyma HR, Vakili AH, Moayedi H, Panjsetooni A, Nazir R
    ScientificWorldJournal, 2013;2013:587462.
    PMID: 24459437 DOI: 10.1155/2013/587462
    Internal erosion is known as the most important cause of dam failure after overtopping. It is important to improve the erosion resistance of the erodible soil by selecting an effective technique along with the reasonable costs. To prevent internal erosion of embankment dams the use of chemical stabilizers that reduce the soil erodibility potential is highly recommended. In the present study, a lignin-based chemical, known as lignosulfonate, is used to improve the erodibility of clayey sand specimen. The clayey sand was tested in various hydraulic heads in terms of internal erosion in its natural state as well as when it is mixed with the different percentages of lignosulfonate. The results show that erodibility of collected clayey sand is very high and is dramatically reduced by adding lignosulfonate. Adding 3% of lignosulfonate to clayey sand can reduce the coefficient of soil erosion from 0.01020 to 0.000017. It is also found that the qualitative erodibility of stabilized soil with 3% lignosulfonate is altered from the group of extremely rapid to the group of moderately slow.
    Matched MeSH terms: Conservation of Natural Resources/methods
  20. Gholizadeh H, Abu Osman NA, Eshraghi A, Ali S, Arifin N, Wan Abas WA
    Biomed Eng Online, 2014;13:1.
    PMID: 24410918 DOI: 10.1186/1475-925X-13-1
    Good prosthetic suspension system secures the residual limb inside the prosthetic socket and enables easy donning and doffing. This study aimed to introduce, evaluate and compare a newly designed prosthetic suspension system (HOLO) with the current suspension systems (suction, pin/lock and magnetic systems).
    Matched MeSH terms: Materials Testing/methods*
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links