Displaying publications 1721 - 1740 of 1878 in total

Abstract:
Sort:
  1. Lau SC, Zhang R, Brodie EL, Piceno YM, Andersen G, Liu WT
    FEMS Microbiol Ecol, 2013 May;84(2):259-69.
    PMID: 23237658 DOI: 10.1111/1574-6941.12057
    Knowledge about the biogeography of marine bacterioplankton on the global scale in general and in Southeast Asia in particular has been scarce. This study investigated the biogeography of bacterioplankton community in Singapore seawaters. Twelve stations around Singapore island were sampled on different schedules over 1 year. Using PCR-DNA fingerprinting, DNA cloning and sequencing, and microarray hybridization of the 16S rRNA genes, we observed clear spatial variations of bacterioplankton diversity within the small area of the Singapore seas. Water samples collected from the Singapore Strait (south) throughout the year were dominated by DNA sequences affiliated with Cyanobacteria and Alphaproteobacteria that were believed to be associated with the influx of water from the open seas in Southeast Asia. On the contrary, water in the relatively polluted Johor Strait (north) were dominated by Betaproteobacteria, Gammaproteobacteria, and Bacteroidetes and that were presumably associated with river discharge and the relatively eutrophic conditions of the waterway. Bacterioplankton diversity was temporally stable, except for the episodic surge of Pseudoalteromonas, associated with algal blooms. Overall, these results provide valuable insights into the diversity of bacterioplankton communities in Singapore seas and the possible influences of hydrological conditions and anthropogenic activities on the dynamics of the communities.
    Matched MeSH terms: Phylogeny
  2. Nguyen AK, Nguyen DV, Ngo GC, Nguyen TT, Inoue S, Yamada A, et al.
    Jpn J Infect Dis, 2011;64(5):391-6.
    PMID: 21937820
    This study was aimed at determining the molecular epidemiology of rabies virus (RABV) circulating in Vietnam. Intra vitam samples (saliva and cerebrospinal fluid) were collected from 31 patients who were believed to have rabies and were admitted to hospitals in northern provinces of Vietnam. Brain samples were collected from 176 sick or furious rabid dogs from all over the country. The human and canine samples were subjected to reverse transcription-polymerase chain reaction analysis. The findings showed that 23 patients tested positive for RABV. Interestingly, 5 rabies patients did not have any history of dog or cat bites, but they had an experience of butchering dogs or cats, or consuming their meat. RABV was also detected in 2 of the 100 sick dogs from slaughterhouses. Molecular epidemiological analysis of 27 RABV strains showed that these viruses could be classified into two groups. The RABVs classified into Group 1 were distributed throughout Vietnam and had sequence similarity with the strains from China, Thailand, Malaysia, and the Philippines. However, the RABVs classified into Group 2 were only found in the northern provinces of Vietnam and showed high sequence similarity with the strain from southern China. This finding suggested the recent influx of Group 2 RABVs between Vietnam and China across the border. Although the incidence of rabies due to circulating RABVs in slaughterhouses is less common than that due to dog bite, the national program for rabies control and prevention in Vietnam should include monitoring of the health of dogs meant for human consumption and vaccination for workers at dog slaughterhouses. Further, monitoring of and research on the circulating RABVs in dog markets may help to determine the cause of rabies and control the spread of rabies in slaughterhouses in Vietnam.
    Matched MeSH terms: Phylogeny
  3. Shuan Ju Teh C, Thong KL, Osawa R, Heng Chua K
    J Gen Appl Microbiol, 2011;57(1):19-26.
    PMID: 21478644
    Vibrio cholerae, the causative agent of cholera, is endemic in many parts of the world, especially in countries poor in resources. Molecular subtyping of V. cholerae is useful to trace the regional spread of a clone or multidrug-resistant strains during outbreaks of cholera. Current available PCR-based fingerprinting methods such as Random Amplified Polymorphic DNA (RAPD)-PCR, Enterobacterial Repetitive Intergenic Consensus Sequence (ERIC)-PCR, and Repetitive Extragenic Palindromic (REP)-PCR were used to subtype V. cholerae. However, there are problems for inter-laboratory comparison as these PCR methods have their own limitations especially when different PCR methods have been used for molecular typing. In this study, a Vibrio cholerae Repeats-PCR (VCR-PCR) approach which targets the genetic polymorphism of the integron island of Vibrios was used and compared with other PCR-based fingerprinting methods in subtyping. Forty-three V. cholerae of different serogroups from various sources were tested. The PCR-fingerprinting approaches were evaluated on typeability, reproducibility, stability and discriminatory power. Overall, Malaysian non-O1/non-O139 V. cholerae were more diverse than O1 strains. Four non-O1/non-O139 strains were closely related with O1 strains. The O139 strain in this study shared similarity with strains of both O1 and non-O1/non-O139 serogroups. ERIC-PCR was the most discriminative approach (D value = 0.996). VCR-PCR was useful in discriminating non-O1/non-O139 strains. RAPD-PCR and REP-PCR were less suitable for efficient subtyping purposes as they were not reproducible and lacked stability. The combination of the ERIC-PCR and VCR-PCR may overcome the inadequacy of any one approach and hence provide more informative data.
    Matched MeSH terms: Phylogeny
  4. Nishiki I, Minami T, Chen SC, Itami T, Yoshida T
    J Gen Appl Microbiol, 2012;58(6):457-63.
    PMID: 23337581
    Group C Streptococcus dysgalactiae (GCSD) is a pathogen of farmed fish. Almost all GCSD isolates from Asian countries, including Japan, Taiwan, Malaysia, and China, have a serum opacity factor (SOF-FD). Although the SOF-FD sequences in different GCSD isolates are identical, different opacification activities are observed. Three types of variations were observed in the upstream sequence of the sof-FD gene in GCSD isolates with different SOF-FD activities. Type 1 was characterized by insertion of an IS981-like element into the upstream region of the sof-FD gene. In Type 2, an IS981-like element was inserted into the upstream region in a direction opposite to that in Type 1. In Type 3, no IS element was inserted. Type 1 was predominant among Japanese isolates (129 of 133). Isolates from other Asian countries were generally Type 3 (13 of 16). Except for 1 strain, Type 1 strains exhibited opacification activities with optical densities (ODs)>0.6, while Type 2 and Type 3 strains have low opacification activities (ODs >0.2). Only Type 1 strains have putative -10 and -35 promoter regions upstream of the sof-FD gene, and the expression level of the sof-FD gene was higher in Type 1 strains than in Type 2 and Type 3 strains.
    Matched MeSH terms: Phylogeny
  5. Barkham T, Zadoks RN, Azmai MNA, Baker S, Bich VTN, Chalker V, et al.
    PLoS Negl Trop Dis, 2019 06;13(6):e0007421.
    PMID: 31246981 DOI: 10.1371/journal.pntd.0007421
    BACKGROUND: In 2015, Singapore had the first and only reported foodborne outbreak of invasive disease caused by the group B Streptococcus (GBS; Streptococcus agalactiae). Disease, predominantly septic arthritis and meningitis, was associated with sequence type (ST)283, acquired from eating raw farmed freshwater fish. Although GBS sepsis is well-described in neonates and older adults with co-morbidities, this outbreak affected non-pregnant and younger adults with fewer co-morbidities, suggesting greater virulence. Before 2015 ST283 had only been reported from twenty humans in Hong Kong and two in France, and from one fish in Thailand. We hypothesised that ST283 was causing region-wide infection in Southeast Asia.

    METHODOLOGY/PRINCIPAL FINDINGS: We performed a literature review, whole genome sequencing on 145 GBS isolates collected from six Southeast Asian countries, and phylogenetic analysis on 7,468 GBS sequences including 227 variants of ST283 from humans and animals. Although almost absent outside Asia, ST283 was found in all invasive Asian collections analysed, from 1995 to 2017. It accounted for 29/38 (76%) human isolates in Lao PDR, 102/139 (73%) in Thailand, 4/13 (31%) in Vietnam, and 167/739 (23%) in Singapore. ST283 and its variants were found in 62/62 (100%) tilapia from 14 outbreak sites in Malaysia and Vietnam, in seven fish species in Singapore markets, and a diseased frog in China.

    CONCLUSIONS: GBS ST283 is widespread in Southeast Asia, where it accounts for a large proportion of bacteraemic GBS, and causes disease and economic loss in aquaculture. If human ST283 is fishborne, as in the Singapore outbreak, then GBS sepsis in Thailand and Lao PDR is predominantly a foodborne disease. However, whether transmission is from aquaculture to humans, or vice versa, or involves an unidentified reservoir remains unknown. Creation of cross-border collaborations in human and animal health are needed to complete the epidemiological picture.

    Matched MeSH terms: Phylogeny
  6. Rahman RN, Mahamad S, Salleh AB, Basri M
    J Ind Microbiol Biotechnol, 2007 Jul;34(7):509-17.
    PMID: 17492323
    Five out of the nine benzene-toulene-ethylbenzene-xylene (BTEX) tolerant bacteria that demonstrated high protease activity on skim milk agar were isolated. Among them, isolate 115b identified as Bacillus pumilus exhibited the highest protease production. The protease produced was stable in 25% (v/v) benzene and toluene and it was activated 1.7 and 2.5- fold by n-dodecane and n-tetradecane, respectively. The gene encoding the organic solvent tolerant protease was cloned and its nucleotide sequence determined. Sequence analysis revealed an open reading frame (ORF) of 1,149 bp that encoded a polypeptide of 383 amino acid residues. The polypeptide composed of 29 residues of signal peptide, a propeptide of 79 residues and a mature protein of 275 amino acids with a calculated molecular mass of 27,846 Da. This is the only report available to date on organic solvent tolerant protease from B. pumilus.
    Matched MeSH terms: Phylogeny
  7. Lam TT, Jia N, Zhang YW, Shum MH, Jiang JF, Zhu HC, et al.
    Nature, 2020 07;583(7815):282-285.
    PMID: 32218527 DOI: 10.1038/s41586-020-2169-0
    The ongoing outbreak of viral pneumonia in China and across the world is associated with a new coronavirus, SARS-CoV-21. This outbreak has been tentatively associated with a seafood market in Wuhan, China, where the sale of wild animals may be the source of zoonotic infection2. Although bats are probable reservoir hosts for SARS-CoV-2, the identity of any intermediate host that may have facilitated transfer to humans is unknown. Here we report the identification of SARS-CoV-2-related coronaviruses in Malayan pangolins (Manis javanica) seized in anti-smuggling operations in southern China. Metagenomic sequencing identified pangolin-associated coronaviruses that belong to two sub-lineages of SARS-CoV-2-related coronaviruses, including one that exhibits strong similarity in the receptor-binding domain to SARS-CoV-2. The discovery of multiple lineages of pangolin coronavirus and their similarity to SARS-CoV-2 suggests that pangolins should be considered as possible hosts in the emergence of new coronaviruses and should be removed from wet markets to prevent zoonotic transmission.
    Matched MeSH terms: Phylogeny
  8. Tripathi BM, Kim M, Singh D, Lee-Cruz L, Lai-Hoe A, Ainuddin AN, et al.
    Microb Ecol, 2012 Aug;64(2):474-84.
    PMID: 22395784 DOI: 10.1007/s00248-012-0028-8
    The dominant factors controlling soil bacterial community variation within the tropics are poorly known. We sampled soils across a range of land use types--primary (unlogged) and logged forests and crop and pasture lands in Malaysia. PCR-amplified soil DNA for the bacterial 16S rRNA gene targeting the V1-V3 region was pyrosequenced using the 454 Roche machine. We found that land use in itself has a weak but significant effect on the bacterial community composition. However, bacterial community composition and diversity was strongly correlated with soil properties, especially soil pH, total carbon, and C/N ratio. Soil pH was the best predictor of bacterial community composition and diversity across the various land use types, with the highest diversity close to neutral pH values. In addition, variation in phylogenetic structure of dominant lineages (Alphaproteobacteria, Beta/Gammaproteobacteria, Acidobacteria, and Actinobacteria) is also significantly correlated with soil pH. Together, these results confirm the importance of soil pH in structuring soil bacterial communities in Southeast Asia. Our results also suggest that unlike the general diversity pattern found for larger organisms, primary tropical forest is no richer in operational taxonomic units of soil bacteria than logged forest, and agricultural land (crop and pasture) is actually richer than primary forest, partly due to selection of more fertile soils that have higher pH for agriculture and the effects of soil liming raising pH.
    Matched MeSH terms: Phylogeny
  9. Haruna E, Zin NM, Kerfahi D, Adams JM
    Microb Ecol, 2018 Jan;75(1):88-103.
    PMID: 28642991 DOI: 10.1007/s00248-017-1002-2
    The extent to which distinct bacterial endophyte communities occur between different plant organs and species is poorly known and has implications for bioprospecting efforts. Using the V3 region of the bacterial 16S ribosomal RNA (rRNA) gene, we investigated the diversity patterns of bacterial endophyte communities of three rainforest plant species, comparing leaf, stem, and root endophytes plus rhizosphere soil community. There was extensive overlap in bacterial communities between plant organs, between replicate plants of the same species, between plant species, and between plant organ and rhizosphere soil, with no consistent clustering by compartment or host plant species. The non-metric multidimensional scaling (NMDS) analysis highlighted an extensively overlapping bacterial community structure, and the β-nearest taxon index (βNTI) analysis revealed dominance of stochastic processes in community assembly, suggesting that bacterial endophyte operational taxonomic units (OTUs) were randomly distributed among plant species and organs and rhizosphere soil. Percentage turnover of OTUs within pairs of samples was similar both for plant individuals of the same species and of different species at around 80-90%. Our results suggest that sampling extra individuals, extra plant organs, extra species, or use of rhizosphere soil, might be about equally effective for obtaining new OTUs for culture. These observations suggest that the plant endophyte community may be much more diverse, but less predictable, than would be expected from culturing efforts alone.
    Matched MeSH terms: Phylogeny
  10. Toh X, Soh ML, Ng MK, Yap SC, Harith N, Fernandez CJ, et al.
    Transbound Emerg Dis, 2019 Sep;66(5):1884-1893.
    PMID: 31059176 DOI: 10.1111/tbed.13218
    Equine influenza is a major cause of respiratory infections in horses and can spread rapidly despite the availability of commercial vaccines. In this study, we carried out molecular characterization of Equine Influenza Virus (EIV) isolated from the Malaysian outbreak in 2015 by sequencing of the HA and NA gene segments using Sanger sequencing. The nucleotide and amino acid sequences of HA and NA were compared with representative Florida clade 1 and clade 2 strains using phylogenetic analysis. The Florida clade 1 viruses identified in this outbreak revealed numerous amino acid substitutions in the HA protein as compared to the current OIE vaccine strain recommendations and representative strains of circulating Florida sub-lineage clade 1 and clade 2. Differences in HA included amino acids located within antigenic sites which could lead to reduced immune recognition of the outbreak strain and alter the effectiveness of vaccination against the outbreak strain. Detailed surveillance and genetic information sharing could allow genetic drift of equine influenza viruses to be monitored more effectively on a global basis and aid in refinement of vaccine strain selection for EIV.
    Matched MeSH terms: Phylogeny
  11. Chan PL, Rose RJ, Abdul Murad AM, Zainal Z, Ong PW, Ooi LC, et al.
    Plant Cell Rep, 2020 Nov;39(11):1395-1413.
    PMID: 32734510 DOI: 10.1007/s00299-020-02571-7
    KEY MESSAGE: Transcript profiling during the early induction phase of oil palm tissue culture and RNAi studies in a model somatic embryogenesis system showed that EgENOD93 expression is essential for somatic embryogenesis. Micropropagation of oil palm through tissue culture is vital for the generation of superior and uniform elite planting materials. Studies were carried out to identify genes to distinguish between leaf explants with the potential to develop into embryogenic or non-embryogenic callus. Oil palm cDNA microarrays were co-hybridized with cDNA probes of reference tissue, separately with embryo forming (media T527) and non-embryo (media T694) forming leaf explants sampled at Day 7, Day 14 and Day 21. Analysis of the normalized datasets has identified 77, 115 and 127 significantly differentially expressed genes at Day 7, Day 14, and Day 21, respectively. An early nodulin 93 protein gene (ENOD93), was highly expressed at Day 7, Day 14, and Day 21 and in callus (media T527), as assessed by RT-qPCR. Validation of EgENOD93 across tissue culture lines of different genetic background and media composition showed the potential of this gene as an embryogenic marker. In situ RNA hybridization and functional characterization in Medicago truncatula provided additional evidence that ENOD93 is essential for somatic embryogenesis. This study supports the suitability of EgENOD93 as a marker to predict the potential of leaf explants to produce embryogenic callus. Crosstalk among stresses, auxin, and Nod-factor like signalling molecules likely induces the expression of EgENOD93 for embryogenic callus formation.
    Matched MeSH terms: Phylogeny
  12. Ang JXD, Kadir KA, Mohamad DSA, Matusop A, Divis PCS, Yaman K, et al.
    Parasit Vectors, 2020 Sep 15;13(1):472.
    PMID: 32933567 DOI: 10.1186/s13071-020-04345-2
    BACKGROUND: Plasmodium knowlesi is a significant cause of human malaria in Sarawak, Malaysian Borneo. Only one study has been previously undertaken in Sarawak to identify vectors of P. knowlesi, where Anopheles latens was incriminated as the vector in Kapit, central Sarawak. A study was therefore undertaken to identify malaria vectors in a different location in Sarawak.

    METHODS: Mosquitoes found landing on humans and resting on leaves over a 5-day period at two sites in the Lawas District of northern Sarawak were collected and identified. DNA samples extracted from salivary glands of Anopheles mosquitoes were subjected to nested PCR malaria-detection assays. The small subunit ribosomal RNA (SSU rRNA) gene of Plasmodium was sequenced, and the internal transcribed spacer 2 (ITS2) and mitochondrial cytochrome c oxidase subunit 1 (cox1) gene of the mosquitoes were sequenced from the Plasmodium-positive samples for phylogenetic analysis.

    RESULTS: Totals of 65 anophelines and 127 culicines were collected. By PCR, 6 An. balabacensis and 5 An. donaldi were found to have single P. knowlesi infections while 3 other An. balabacensis had either single, double or triple infections with P. inui, P. fieldi, P. cynomolgi and P. knowlesi. Phylogenetic analysis of the Plasmodium SSU rRNA gene confirmed 3 An. donaldi and 3 An. balabacensis with single P. knowlesi infections, while 3 other An. balabacensis had two or more Plasmodium species of P. inui, P. knowlesi, P. cynomolgi and some species of Plasmodium that could not be conclusively identified. Phylogenies inferred from the ITS2 and/or cox1 sequences of An. balabacensis and An. donaldi indicate that they are genetically indistinguishable from An. balabacensis and An. donaldi, respectively, found in Sabah, Malaysian Borneo.

    CONCLUSIONS: Previously An. latens was identified as the vector for P. knowlesi in Kapit, central Sarawak, Malaysian Borneo, and now An. balabacensis and An. donaldi have been incriminated as vectors for zoonotic malaria in Lawas, northern Sarawak.

    Matched MeSH terms: Phylogeny
  13. Thapa BR, Omar AR, Arshad SS, Hair-Bejo M
    Avian Pathol, 2004 Jun;33(3):359-63.
    PMID: 15223566
    Previously we have shown that avian leukosis virus subgroup J (ALV-J) might be present in chicken flocks from Malaysia based on serological study and also on detection of tissue samples with myelocytic infiltration. In this study, the polymerase chain reaction was used to detect ALV-J sequences from archived frozen samples. Out of 21 tissue samples examined, 16 samples were positive for proviral DNA and four samples for ALV-J RNA. However, only nine samples were found positive for myelocytic infiltration. A total of 465 base pairs equivalent to positions 5305 to 5769 of HPRS-103 from each of the viral RNA positive samples were characterized. Sequence analysis indicated that the samples showed high identity (95.9 to 98.2%) and were close to HPRS-103 with identities between 97.4 and 99.3%. This study indicates that ALV-J-specific sequences can be detected by polymerase chain reaction from frozen tissue samples with and without myelocytic infiltration.
    Matched MeSH terms: Phylogeny
  14. Goh SL, Kee BP, Abdul Jabar K, Chua KH, Nathan AM, Bruyne J, et al.
    Pathog Glob Health, 2020 02;114(1):46-54.
    PMID: 32003298 DOI: 10.1080/20477724.2020.1719325
    Streptococcus pneumoniae (S. pneumoniae) is one of the main causative agents of pneumococcal diseases. To date, more than 90 distinct serotypes have been identified. Implementation of vaccines has caused a drastic reduction in vaccine-serotype pneumococcal diseases but increase in cases due to non-vaccine serotype has been observed in Malaysia. However, further investigation on different serotype incidence in Malaysia is needed and the rate of pneumococcal vaccination for new-born babies in Malaysia remains low. The recent emergence of drug-resistant S. pneumoniae (DRSP) has also been a global concern, especially penicillin resistance. This study determined the serotypes of S. pneumoniae strains (n = 95) isolated from nasopharyngeal specimens from children admitted to UMMC from 2013 to 2015. In accordance with previous studies, PCR result showed 40% of NT isolates were successfully typed as 3 less common serotypes, namely 9N/L, 17A, and 23B. The repetitive-element PCR (REP-PCR) result revealed genetic variations among the strains whereby five major clusters were observed at the similarity of 80% by clustering analysis based on fingerprint data. Penicillin-binding proteins (pbps) of selected isolates were studied by PCR and sequencing. Three strains with ≤19-mm diameter zone for Oxacillin Disc Diffusion (ODD) test previously were recorded to have mutation on all pbp1a, pbp2b, and pbp2x with MIC of 4 µg/ml, which were penicillin-intermediate resistance according to the CLSI breakpoints.
    Matched MeSH terms: Phylogeny
  15. Lim JC, Goh KM, Shamsir MS, Ibrahim Z, Chong CS
    J Basic Microbiol, 2015 Apr;55(4):514-9.
    PMID: 25523650 DOI: 10.1002/jobm.201400621
    The Anoxybacillus sp. SK 3-4, previously isolated from a hot spring, was screened for its heavy metals resistance (Al(3+), Mn(2+), Cu(2+), Co(2+), Zn(2+), and Ni(2+)) and the strain was found to be most resistant to aluminum. Significant growth of the strain was observed when it was grown in medium containing aluminum (200 mg L(-1)-800 mg L(-1)) with relative growth rates ranging between 77% and 100%. A gene encoding the aluminum resistance protein (accession number: WP_021095658.1) was found in genome of strain SK 3-4, which revealed high sequence identity (>95%) to its homologues from Anoxybacillus species. Sequence comparisons with two functionally characterized aluminum resistance proteins, namely G2alt and ALU1-P, showed 97% and 81% of sequence identity, respectively. Four putative metal binding sites were detected in SK 3-4 aluminum resistance protein and G2alt at same amino acid residue positions of 186, 195, 198, and 201. Strain SK 3-4 was found to be able to remove aluminum from aqueous solution. This study demonstrated that Anoxybacillus sp. SK 3-4 could be applied in the treatment of aluminum contaminated wastewater.
    Matched MeSH terms: Phylogeny
  16. Rahim MB, Syed MA, Shukor MY
    J Basic Microbiol, 2012 Oct;52(5):573-81.
    PMID: 22144174 DOI: 10.1002/jobm.201100116
    As well as for chemical and environmental reasons, acrylamide is widely used in many industrial applications. Due to its carcinogenicity and toxicity, its discharge into the environment causes adverse effects on humans and ecology alike. In this study, a novel acrylamide-degrading yeast has been isolated. The isolate was identified as Rhodotorula sp. strain MBH23 using ITS rRNA analysis. The results showed that the best carbon source for growth was glucose at 1.0% (w/v). The optimum acrylamide concentration, being a nitrogen source for cellular growth, was at 500 mg l(-1). The highest tolerable concentration of acrylamide was 1500 mg l(-1) whereas growth was completely inhibited at 2000 mg l(-1). At 500 mg l(-1), the strain MBH completely degraded acrylamide on day 5. Acrylic acid as a metabolite was detected in the media. Strain MBH23 grew well between pH 6.0 and 8.0 and between 27 and 30 °C. Amides such as 2-chloroacetamide, methacrylamide, nicotinamide, acrylamide, acetamide, and propionamide supported growth. Toxic heavy metals such as mercury, chromium, and cadmium inhibited growth on acrylamide.
    Matched MeSH terms: Phylogeny
  17. Chan LL, Mak JW, Low YT, Koh TT, Ithoi I, Mohamed SM
    Acta Trop, 2011 Jan;117(1):23-30.
    PMID: 20858455 DOI: 10.1016/j.actatropica.2010.09.004
    During a study on the quality of the indoor environment, Acanthamoeba spp. were detected in 20 out of 87 dust samples collected from air-conditioners installed in a four-story campus building located in Kuala Lumpur, Malaysia. Twenty-one cloned Acanthamoeba isolates designated as IMU1 to IMU21 were established from the positive primary cultures. Five species were identified from the 16 isolates according to the morphological criteria of Pussard and Pons; i.e. A. castellanii, A. culbertsoni, A. griffini, A. hatchetti and A. polyphaga. Species identities for the remaining five isolates (IMU4, IMU5, IMU15, IMU20 and IMU21), however, could not be determined morphologically. At genotypic characterization, these isolates were placed into T3 (IMU14); T5 (IMU16 and IMU17) and T4 (all the remaining isolates). To predict the potential pathogenicity of these Acanthamoeba isolates, thermo- and osmotolerance tests were employed; many isolates were predicted as potential human pathogens based on the outcome of these tests. This is the first time potentially pathogenic Acanthamoeba have been isolated from air-conditioners in Malaysia.
    Matched MeSH terms: Phylogeny
  18. Lau SE, Schwarzacher T, Othman RY, Harikrishna JA
    BMC Plant Biol, 2015;15:194.
    PMID: 26260631 DOI: 10.1186/s12870-015-0577-3
    The R2R3-MYB genes regulate pigmentation and morphogenesis of flowers, including flower and cell shape, and therefore have importance in the development of new varieties of orchids. However, new variety development is limited by the long breeding time required in orchids. In this study, we identified a cDNA, DhMYB1, that is expressed during flower development in a hybrid orchid, Dendrobium hybrida (Dendrobium bobby messina X Dendrobium chao phraya) then used the direct application of dsRNA to observe the effect of gene silencing on flower phenotype and floral epidermal cell shape.
    Matched MeSH terms: Phylogeny
  19. Khoo JJ, Lim FS, Chen F, Phoon WH, Khor CS, Pike BL, et al.
    Vector Borne Zoonotic Dis, 2016 12;16(12):744-751.
    PMID: 27763821
    Recent studies have shown that ticks harbor Coxiella-like bacteria, which are potentially tick-specific endosymbionts. We recently described the detection of Coxiella-like bacteria and possibly Coxiella burnetii in ticks found from rural areas in Malaysia. In the present study, we collected ticks, including Haemaphysalis bispinosa, Haemaphysalis hystricis, Dermacentor compactus, Dermacentor steini, and Amblyomma sp. from wildlife and domesticated goats from four different locations in Malaysia. Coxiella 16s rRNA genomic sequences were detected by PCR in 89% of ticks tested. Similarity analysis and phylogenetic analyses of the 16s rRNA and rpoB partial sequences were performed for 10 representative samples selected based on the tick species, sex, and location. The findings here suggested the presence of C. burnetii in two samples, each from D. steini and H. hystricis. The sequences of both samples clustered with published C. burnetii sequences. The remaining eight tick samples were shown to harbor 16s rRNA sequences of Coxiella-like bacteria, which clustered phylogenetically according to the respective tick host species. The findings presented here added to the growing evidence of the association between Coxiella-like bacteria and ticks across species and geographical boundaries. The importance of C. burnetii found in ticks in Malaysia warrants further investigation.
    Matched MeSH terms: Phylogeny
  20. Schuh AJ, Guzman H, Tesh RB, Barrett AD
    Vector Borne Zoonotic Dis, 2013 Jul;13(7):479-88.
    PMID: 23590316 DOI: 10.1089/vbz.2011.0870
    Five genotypes (GI-V) of Japanese encephalitis virus (JEV) have been identified, all of which have distinct geographical distributions and epidemiologies. It is thought that JEV originated in the Indonesia-Malaysia region from an ancestral virus. From that ancestral virus GV diverged, followed by GIV, GIII, GII, and GI. Genotype IV appears to be confined to the Indonesia-Malaysia region, as GIV has been isolated in Indonesia from mosquitoes only, while GV has been isolated on three occasions only from a human in Malaysia and mosquitoes in China and South Korea. In contrast, GI-III viruses have been isolated throughout Asia and Australasia from a variety of hosts. Prior to this study only 13 JEV isolates collected from the Indonesian archipelago had been studied genetically. Therefore the sequences of the envelope (E) gene of 24 additional Indonesian JEV isolates, collected throughout the archipelago between 1974 and 1987, were determined and a series of molecular adaptation analyses were performed. Phylogenetic analysis indicated that over a 14-year time span three genotypes of JEV circulated throughout Indonesia, and a statistically significant association between the year of virus collection and genotype was revealed: isolates collected between 1974 and 1980 belonged to GII, isolates collected between 1980 and 1981 belonged to GIV, and isolates collected in 1987 belonged to GIII. Interestingly, three of the GII Indonesian isolates grouped with an isolate that was collected during the JE outbreak that occurred in Australia in 1995, two of the GIII Indonesian isolates were closely related to a Japanese isolate collected 40 years previously, and two Javanese GIV isolates possessed six amino acid substitutions within the E protein when compared to a previously sequenced GIV isolate collected in Flores. Several amino acids within the E protein of the Indonesian isolates were found to be under directional evolution and/or co-evolution. Conceivably, the tropical climate of the Indonesia/Malaysia region, together with its plethora of distinct fauna and flora, may have driven the emergence and evolution of JEV. This is consistent with the extensive genetic diversity seen among the JEV isolates observed in this study, and further substantiates the hypothesis that JEV originated in the Indonesia-Malaysia region.
    Matched MeSH terms: Phylogeny
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links