Displaying publications 161 - 180 of 392 in total

Abstract:
Sort:
  1. Ridzuan R, Rafii MY, Ismail SI, Mohammad Yusoff M, Miah G, Usman M
    Int J Mol Sci, 2018 Oct 11;19(10).
    PMID: 30314374 DOI: 10.3390/ijms19103122
    Chili anthracnose is one of the most devastating fungal diseases affecting the quality and yield production of chili. The aim of this review is to summarize the current knowledge concerning the chili anthracnose disease, as well as to explore the use of marker-assisted breeding programs aimed at improving anthracnose disease resistance in this species. This disease is caused by the Colletotrichum species complex, and there have been ongoing screening methods of chili pepper genotypes with resistance to anthracnose in the field, as well as in laboratories. Conventional breeding involves phenotypic selection in the field, and it is more time-consuming compared to molecular breeding. The use of marker-assisted selection (MAS) on the basis of inheritance, the segregation ratio of resistance to susceptibility, and the gene-controlling resistance may contribute to the development of an improved chili variety and speed up the selection process, while also reducing genetic drag in the segregating population. More importantly, by using molecular markers, the linkage groups are determined dominantly and co-dominantly, meaning that the implementation of a reliable method to produce resistant varieties is crucial in future breeding programs. This updated information will offer a supportive direction for chili breeders to develop an anthracnose-resistant chili variety.
  2. Teoh YX, Othmani A, Lai KW, Goh SL, Usman J
    Comput Methods Programs Biomed, 2023 Dec;242:107807.
    PMID: 37778138 DOI: 10.1016/j.cmpb.2023.107807
    BACKGROUND AND OBJECTIVE: Knee osteoarthritis (OA) is a debilitating musculoskeletal disorder that causes functional disability. Automatic knee OA diagnosis has great potential of enabling timely and early intervention, that can potentially reverse the degenerative process of knee OA. Yet, it is a tedious task, concerning the heterogeneity of the disorder. Most of the proposed techniques demonstrated single OA diagnostic task widely based on Kellgren Lawrence (KL) standard, a composite score of only a few imaging features (i.e. osteophytes, joint space narrowing and subchondral bone changes). However, only one key disease pattern was tackled. The KL standard fails to represent disease pattern of individual OA features, particularly osteophytes, joint-space narrowing, and pain intensity that play a fundamental role in OA manifestation. In this study, we aim to develop a multitask model using convolutional neural network (CNN) feature extractors and machine learning classifiers to detect nine important OA features: KL grade, knee osteophytes (both knee, medial fibular: OSFM, medial tibial: OSTM, lateral fibular: OSFL, and lateral tibial: OSTL), joint-space narrowing (medial: JSM, and lateral: JSL), and patient-reported pain intensity from plain radiography.

    METHODS: We proposed a new feature extraction method by replacing fully-connected layer with global average pooling (GAP) layer. A comparative analysis was conducted to compare the efficacy of 16 different convolutional neural network (CNN) feature extractors and three machine learning classifiers.

    RESULTS: Experimental results revealed the potential of CNN feature extractors in conducting multitask diagnosis. Optimal model consisted of VGG16-GAP feature extractor and KNN classifier. This model not only outperformed the other tested models, it also outperformed the state-of-art methods with higher balanced accuracy, higher Cohen's kappa, higher F1, and lower mean squared error (MSE) in seven OA features prediction.

    CONCLUSIONS: The proposed model demonstrates pain prediction on plain radiographs, as well as eight OA-related bony features. Future work should focus on exploring additional potential radiological manifestations of OA and their relation to therapeutic interventions.

  3. Zawiah M, Khan AH, Abu Farha R, Usman A, AbuHammour K, Abdeen M, et al.
    Postgrad Med, 2023 Sep;135(7):681-689.
    PMID: 37756038 DOI: 10.1080/00325481.2023.2261354
    BACKGROUND: Early recognition of stroke-associated pneumonia (SAP) is critical to reducing morbidity and mortality associated with SAP. This study investigated the predictors of SAP, and the predictive value of the neutrophil percentage-to-albumin ratio (NPAR) for SAP.

    METHODS: This retrospective cohort study was conducted among stroke patients admitted to Jordan University Hospital from January 2015 to May 2021. Multivariable logistic regression was used to identify independent predictors for SAP. The predictive performance was assessed using C-statistics, described as the area under the receiver-operating characteristic curve (AUC, ROC) with a 95% confidence interval.

    RESULTS: Four hundred and six patients were included in the analysis, and the prevalence of SAP was 19.7%. Multivariable logistic analysis showed that males (Adjusted Odds Ratio (AOR): 5.74; 95% Confidence Interval (95%CI): 2.04-1 6.1)], dysphagia (AOR: 5.29; 95% CI: 1.80-15.5), hemiparesis (AOR: 3.27; 95% CI: 1.13-9.47), lower GCS score (AOR: 0.73; 95% CI: 0.58-0.91), higher levels of neutrophil-lymphocyte ratio (NLR) (AOR: 1.15; 95% CI: 1.07-1.24), monocyte-lymphocyte ratio (MLR) (AOR: 1.49; 95% CI: 1.13-1.96), and neutrophil percentage to albumin ratio (NPAR) (AOR: 1.53; 95% CI: 1.33-1.76) were independent predictors of SAP. The NPAR demonstrated a significantly higher AUC than both the NLR (0.939 versus 0.865, Z = 3.169, p = 0.002) and MLR (0.939 versus 0.842, Z = 3.940, p 

  4. Usman MG, Rafii MY, Martini MY, Yusuff OA, Ismail MR, Miah G
    Cell Stress Chaperones, 2018 Mar;23(2):223-234.
    PMID: 28812232 DOI: 10.1007/s12192-017-0836-3
    Backcrossing together with simple sequence repeat marker strategy was adopted to improve popular Malaysian chilli Kulai (Capsicum annuum L.) for heat tolerance. The use of molecular markers in backcross breeding and selection contributes significantly to overcoming the main drawbacks such as increase linkage drag and time consumption, in the ancient manual breeding approach (conventional), and speeds up the genome recovery of the recurrent parent. The strategy was adopted to introgress heat shock protein gene(s) from AVPP0702 (C. annuum L.), which are heat-tolerant, into the genetic profile of Kulai, a popular high-yielding chilli but which is heat sensitive. The parents were grown on seed trays, and parental screening was carried out with 252 simple sequence repeat markers. The selected parents were crossed and backcrossed to generate F1 hybrids and backcross generations. Sixty-eight markers appeared to be polymorphic and were used to assess the backcross generation; BC1F1, BC2F1 and BC3F1. The average recipient allele of the selected four BC1F1 plants was 80.75% which were used to produce the BC2F1 generation. BC1-P7 was the best BC1F1 plant because it had the highest recovery at 83.40% and was positive to Hsp-linked markers (Hsp70-u2 and AGi42). After three successive generations of backcrossing, the average genome recovery of the recurrent parent in the selected plants in BC3F1 was 95.37%. Hsp gene expression analysis was carried out on BC1F1, BC2F1 and BC3F1 selected lines. The Hsp genes were found to be up-regulated when exposed to heat treatment. The pattern of Hsp expression in the backcross generations was similar to that of the donor parent. This confirms the successful introgression of a stress-responsive gene (Hsp) into a Kulai chilli pepper variety. Furthermore, the yield performance viz. plant height, number of fruits, fruit length and weight and total yield of the improved plant were similar with the recurrent parent except that the plant height was significantly lower than the Kulai (recurrent) parent.
  5. Bibi M, Khan MK, Tufail MMB, Godil DI, Usman R, Faizan M
    Environ Sci Pollut Res Int, 2023 Jan;30(3):8207-8225.
    PMID: 36053426 DOI: 10.1007/s11356-022-22677-7
    An era of rapid changes in the technological and economic aspects of developing and developed countries can have detrimental extortions on the environment around the world. From the perspective of globalization, the rapid development and growth can reroute to enhance the interaction between people, organizations, and countries across the globe including China through the usage of information and communication technology which in turn contributes to the economic growth of one side, whereas on the other side, it affects the environmental quality. Referring to this aspect, this study is focused to inspect the link between information and communication technology, and globalization with the facets of degradation in the environment that as CO2 emission and ecological footprint by keeping the view of economic growth prospects as well via using the EKC hypothesis. In our study, time-series data was employed from 1987 to 2020 for China using the Dynamic ARDL approach. Grounded on the findings of the study, economic growth from the sight of GDP fallouts in rising the emission of CO2 and EFP in the short and long run whereas GDP sqr cause decrease in the CO2 emission and EFP. Thus, this authorizes the presence of inverted U-shaped existence among GDP sqr, CO2 emission, and EFP. Therefore, this provides provision for the EKC hypothesis in China. Furthermore, ICT and globalization cause a decline in the emission of CO2 and EFP in the short and long run respectively. In combatting challenges linked to the environment, globalization, as well as ICT, is seen as a crucial factor based on the pieces of evidence in our study while the policy implications are also proposed in the paper.
  6. Iqbal SZ, Usman S, Razis AFA, Basheir Ali N, Saif T, Asi MR
    Int J Environ Res Public Health, 2020 Aug 03;17(15).
    PMID: 32756472 DOI: 10.3390/ijerph17155602
    The main goal of the present research was to explore the seasonal variation of deoxynivalenol (DON) in wheat, corn, and their products, collected during 2018-2019. Samples of 449 of wheat and products and 270 samples of corn and their products were examined using reverse-phase liquid chromatography with a UV detector. The findings of the present work showed that 104 (44.8%) samples of wheat and products from the summer season, and 91 (41.9%) samples from winter season were contaminated with DON (concentration limit of detections (LOD) to 2145 µg/kg and LOD to 2050 µg/kg), from summer and winter seasons, respectively. In corn and products, 87 (61.2%) samples from summer and 57 (44.5%) samples from winter season were polluted with DON with levels ranging from LOD to 2967 µg/kg and LOD to 2490 µg/kg, from the summer and winter season, respectively. The highest dietary intake of DON was determined in wheat flour 8.84 µg/kg body weight/day from the summer season, and 7.21 µg/kg body weight/day from the winter season. The findings of the work argued the need to implement stringent guidelines and create awareness among farmers, stakeholders, and traders of the harmful effect of DON. It is mostly observed that cereal crops are transported and stockpiled in jute bags, which may absorb moisture from the environment and produce favorable conditions for fungal growth. Therefore, these crops must store in polyethylene bags during transportation and storage, and moisture should be controlled. It is highly desirable to use those varieties that are more resistant to fungi attack. Humidity and moisture levels need to be controlled during storage and transportation.
  7. Rehman S, Madni A, Jameel QA, Usman F, Raza MR, Ahmad F, et al.
    AAPS PharmSciTech, 2022 Nov 17;23(8):304.
    PMID: 36396831 DOI: 10.1208/s12249-022-02456-w
    The current study sought to create graphene oxide-based superstructures for gastrointestinal drug delivery. Graphene oxide has a large surface area that can be used to load anti-cancer drugs via non-covalent methods such as surface adsorption and hydrogen bonding. To enhance the bio-applicability of graphene oxide, nano-hybrids were synthesized by encapsulating the graphene oxide into calcium alginate hydrogel beads through the dripping-extrusion technique. These newly developed bio-nanocomposite hybrid hydrogel beads were evaluated in structural analysis, swelling study, drug release parameters, haemolytic assay, and antibacterial activity. Doxorubicin served as a model drug. The drug entrapment efficiency was determined by UV-spectroscopy analysis and was found to be high at ⁓89% in graphene oxide hybrid hydrogel beads. These fabricated hydrogel beads ensure the drug release from a hybrid polymeric matrix in a more controlled and sustained pattern avoiding the problems associated with a non-hybrid polymeric system. The drug release study of 12 h shows about 83% release at pH 6.8. In vitro drug release kinetics proved that drug release was a Fickian mechanism. The cytotoxic effect of graphene oxide hybrid alginate beads was also determined by evaluating the morphology of bacterial cells and red blood cells after incubation. Additionally, it was determined that the sequential encapsulation of graphene oxide in alginate hydrogel beads hides its uneven edges and lessens the graphene oxide's negative impacts. Also, the antibacterial study and biocompatibility of fabricated hydrogel beads made them potential candidates for gastrointestinal delivery.
  8. Shazia A, Xuan TZ, Chuah JH, Usman J, Qian P, Lai KW
    PMID: 34335736 DOI: 10.1186/s13634-021-00755-1
    Coronavirus disease of 2019 or COVID-19 is a rapidly spreading viral infection that has affected millions all over the world. With its rapid spread and increasing numbers, it is becoming overwhelming for the healthcare workers to rapidly diagnose the condition and contain it from spreading. Hence it has become a necessity to automate the diagnostic procedure. This will improve the work efficiency as well as keep the healthcare workers safe from getting exposed to the virus. Medical image analysis is one of the rising research areas that can tackle this issue with higher accuracy. This paper conducts a comparative study of the use of the recent deep learning models (VGG16, VGG19, DenseNet121, Inception-ResNet-V2, InceptionV3, Resnet50, and Xception) to deal with the detection and classification of coronavirus pneumonia from pneumonia cases. This study uses 7165 chest X-ray images of COVID-19 (1536) and pneumonia (5629) patients. Confusion metrics and performance metrics were used to analyze each model. Results show DenseNet121 (99.48% of accuracy) showed better performance when compared with the other models in this study.
  9. Usman F, Dennis JO, Mkawi EM, Al-Hadeethi Y, Meriaudeau F, Ferrell TL, et al.
    Polymers (Basel), 2020 Nov 20;12(11).
    PMID: 33233844 DOI: 10.3390/polym12112750
    This work reports the use of a ternary composite that integrates p-Toluene sulfonic acid doped polyaniline (PANI), chitosan, and reduced graphene oxide (RGO) as the active sensing layer of a surface plasmon resonance (SPR) sensor. The SPR sensor is intended for application in the non-invasive monitoring and screening of diabetes through the detection of low concentrations of acetone vapour of less than or equal to 5 ppm, which falls within the range of breath acetone concentration in diabetic patients. The ternary composite film was spin-coated on a 50-nm-thick gold layer at 6000 rpm for 30 s. The structure, morphology and chemical composition of the ternary composite samples were characterized by FTIR, UV-VIS, FESEM, EDX, AFM, XPS, and TGA and the response to acetone vapour at different concentrations in the range of 0.5 ppm to 5 ppm was measured at room temperature using SPR technique. The ternary composite-based SPR sensor showed good sensitivity and linearity towards acetone vapour in the range considered. It was determined that the sensor could detect acetone vapour down to 0.88 ppb with a sensitivity of 0.69 degree/ppm with a linearity correlation coefficient of 0.997 in the average SPR angular shift as a function of the acetone vapour concentration in air. The selectivity, repeatability, reversibility, and stability of the sensor were also studied. The acetone response was 87%, 94%, and 99% higher compared to common interfering volatile organic compounds such as propanol, methanol, and ethanol, respectively. The attained lowest detection limit (LOD) of 0.88 ppb confirms the potential for the utilisation of the sensor in the non-invasive monitoring and screening of diabetes.
  10. Aslam K, Iqbal SZ, Razis AFA, Usman S, Ali NB
    PMID: 33668973 DOI: 10.3390/ijerph18052270
    This research aims to assess the natural occurrence of patulin (PAT) in selected citrus fruits from central cities of Punjab and Pakistan's northern cities. A total of 2970 fruit samples from 12 citrus cultivars were examined using liquid chromatography fitted with a UV detector. The detection limit (LOD) and quantification limit were 0.04 and 0.12 µg/kg, respectively. About 56% of samples of citrus fruits from Punjab's central cities, Pakistan, were found to be contaminated with PAT, with values ranging from 0.12 to 1150 µg/kg in samples from central Punjab cities. Furthermore, 31.7% of samples of citrus fruits from northern cities of Pakistan were contaminated with PAT, with values ranging from 0.12 to 320 µg/kg. About 22.1% of citrus fruit samples had PAT levels greater than the suggested limits established by the European Union (EU). The dietary intake levels of PAT ranged from 0.10 to 1.11 µg/kg bw/day in the central cities of Punjab, Pakistan, and 0.13 to 1.93 µg/kg bw/day in the northern cities of Pakistan.
  11. Razis AFA, Shehzad MM, Usman S, Ali NB, Iqbal SZ, Naheed N, et al.
    PMID: 33276517 DOI: 10.3390/ijerph17238964
    A total of 779 samples of edible nuts (melon seeds, watermelon seeds, pumpkin seeds, and cantaloupe seeds) from Southern Punjab (Pakistan), were collected during the summer and the winter seasons. The natural occurrence of aflatoxins (AFs) and vitamin E (tocopherols) levels were investigated using HPLC. The results have shown that 180 (43.4%) of samples from the winter season and 122 (33.4%) samples from the summer season were found positive for AFs. Elevated average levels of total AFs (20.9 ± 3.10 μg/kg, dry weight) were observed in watermelon seeds without shell, and the lowest average amount (15.9 ± 3.60 μg/kg) were documented in melon seeds without shell samples from the winter season. An elevated average amount of total AFs 17.3 ± 1.50 μg/kg was found in pumpkin seeds available without a shell. The results have documented a significant difference in total AFs levels in edible seeds available with shells versus without shells (α = 0.05 & 0.01). The highest dietary intake of 6.30 μg/kg/day was found in female individuals from consuming pumpkin seeds (without shell) in the winter season. A value of 3.00 μg/kg/day was found in pumpkin seed without shell in the summer season in female individuals. The highest total tocopherol levels were 22.2 ± 7.70 ng/100 g in pumpkin seeds samples from the winter season and 14.5 ± 5.50 mg/100 g in melon seed samples from the summer season. The variation of total tocopherol levels in edible seeds among the winter and summer seasons showed a significant difference (p ≤ 0.0054), except watermelon seeds samples with non-significant differences (p ≥ 0.183).
  12. Adebayo IA, Usman AI, Shittu FB, Ismail NZ, Arsad H, Muftaudeen TK, et al.
    Bioinorg Chem Appl, 2020;2020:8898360.
    PMID: 33029114 DOI: 10.1155/2020/8898360
    BACKGROUND: Acute myeloid leukemia (AML) persists to be a major health problem especially among children as effective chemotherapy to combat the disease is yet to be available. Boswellia dalzielii is a well-known herb that is traditionally used for treatment and management of many diseases including degenerative diseases. In this study, silver nanoparticles were synthesized from the phytochemicals of B. dalzielii stem bark aqueous extract. The silver nanoparticles were characterized by carrying out Fourier Transform Infrared (FTIR) spectroscopy, Energy Filtered Scanning Electron Microscopy (FESEM), X-ray diffraction, and Dynamic Light Scattering (DLS) analyses. Antioxidant capacity of the nanoparticles was evaluated using 2,2-diphenyl-1-picrylhydrazyl (DPPH) assay, and the antiproliferative effect of the nanoparticles on Kasumi-1 leukemia cells was investigated using PrestoBlue assay. Flow cytometry analysis was performed to observe the effect of the nanoparticles on the leukemia cell cycle progression.

    RESULTS: Our findings revealed that the synthesized silver nanoparticles were formed from electrons of the plant phytochemicals which include aromatic compounds, ethers, and alkynes. FESEM analysis revealed that the sizes of the nanoparticles range from 12 nm to 101 nm; however, DLS analysis estimated a larger average size of the nanoparticles (108.3 nm) because it measured the hydrodynamic radii of the nanoparticles. The zeta potential of the nanoparticles was -16 nm, and the XRD pattern of the nanoparticles has distinct peaks at 38.02°, 42.94°, 64.45°, 77.20°, and 81.47°, which is typical of face-centered cubic (fcc) structure of silver. The Trolox Equivalence Antioxidant Capacity (TEAC) of the nanoparticles was estimated to be 300.91 μM Trolox/mg silver nanoparticles. The nanoparticles inhibited Kasumi-1 cell proliferation. The half minimal inhibitory concentrations (IC50s) that inhibited Kasumi-1 cell proliferation are 49.5 μg/ml and 13.25 μg/ml at 48 and 72 hours, respectively. The nanoparticles induced cell cycle arrest in the Kasumi-1 cells at S (5% increase) and G2/M (3% increase) phases.

    CONCLUSION: The nanoparticles synthesized from the stem bark extract of B. dalzielii inhibit the growth of Kasumi-1 leukemia cells by activating cell cycle arrest; thus, they are potential antileukemic agents.

  13. Hamdan PNF, Hamzaid NA, Hasnan N, Abd Razak NA, Razman R, Usman J
    Sci Rep, 2024 Mar 18;14(1):6451.
    PMID: 38499594 DOI: 10.1038/s41598-024-56955-w
    Literature has shown that simulated power production during conventional functional electrical stimulation (FES) cycling was improved by 14% by releasing the ankle joint from a fixed ankle setup and with the stimulation of the tibialis anterior and triceps surae. This study aims to investigate the effect of releasing the ankle joint on the pedal power production during FES cycling in persons with spinal cord injury (SCI). Seven persons with motor complete SCI participated in this study. All participants performed 1 min of fixed-ankle and 1 min of free-ankle FES cycling with two stimulation modes. In mode 1 participants performed FES-evoked cycling with the stimulation of quadriceps and hamstring muscles only (QH stimulation), while Mode 2 had stimulation of quadriceps, hamstring, tibialis anterior, and triceps surae muscles (QHT stimulation). The order of each trial was randomized in each participant. Free-ankle FES cycling offered greater ankle plantar- and dorsiflexion movement at specific slices of 20° crank angle intervals compared to fixed-ankle. There were significant differences in the mean and peak normalized pedal power outputs (POs) [F(1,500) = 14.03, p 
  14. Zawiah M, Khan AH, Farha RA, Usman A, Al-Ashwal FY, Akkaif MA
    Front Neurol, 2024;15:1322971.
    PMID: 38361641 DOI: 10.3389/fneur.2024.1322971
    BACKGROUND: Acute ischemic stroke (AIS) remains a substantial global health challenge, contributing to increased morbidity, disability, and mortality. This study aimed at investigating the predictive value of the neutrophil percentage to albumin ratio (NPAR) in determining intensive care unit (ICU) admission among AIS patients.

    METHODS: A retrospective observational study was conducted, involving AIS cases admitted to a tertiary hospital in Jordan between 2015 and 2020. Lab data were collected upon admission, and the primary outcome was ICU admission during hospitalization. Descriptive and inferential analyses were performed using SPSS version 29.

    RESULTS: In this study involving 364 AIS patients, a subset of 77 (21.2%) required admission to the ICU during their hospital stay, most frequently within the first week of admission. Univariable analysis revealed significantly higher NPAR levels in ICU-admitted ischemic stroke patients compared to those who were not admitted (23.3 vs. 15.7, p 

  15. Abd Karim S, Hamid MS, Choong A, Ooi MY, Usman J
    J Sports Med Phys Fitness, 2023 May;63(5):674-684.
    PMID: 37132278 DOI: 10.23736/S0022-4707.22.14376-8
    BACKGROUND: Supraspinatus tendinopathy is a significant cause of pain and function loss. It has been suggested that platelet-rich plasma (PRP) and prolotherapy are effective treatments for this condition. This study was done to assess and compare the effects of PRP and prolotherapy on shoulder function and pain. The secondary aim was to evaluate the effect of the treatment on shoulder range of motion, supraspinatus tendon thickness, patient satisfaction, and adverse effects.

    METHODS: This was a randomized, double-blind clinical trial. The study included 64 patients over the age of 18 who had supraspinatus tendinopathy and had not responded to at least three months of conventional treatment. Patients were assigned to either receive 2 mL of PRP (N.=32) or prolotherapy (N.=32). The Shoulder Pain and Disability Index (SPADI) and the Numerical Rating Scale (NRS) were the primary outcomes. Secondary outcomes included shoulder range of motion (ROM), supraspinatus tendon thickness, and adverse effects, which were measured at baseline, 3, 6, and 6 months after injection. At six months, patient satisfaction was assessed.

    RESULTS: Repeated measures ANOVA showed there was a statistically significant effect of time on total SPADI scores (F [2.75, 151.11], = 2.85, P=0.040) and the NRS (F [2.69, 147.86], = 4.32, P=0.008) within each group. There were no other significant changes over time or between groups. Significantly more patients in the PRP group experienced increased pain lasting less than two weeks after injection (χ2=11.94, P=0.030).

    CONCLUSIONS: PRP and prolotherapy resulted in improved shoulder function and pain for patients with chronic supraspinatus tendinopathy who did not response to conventional treatment.

  16. Rahman MM, Muniyandi RC, Sahran S, Usman OL, Moniruzzaman M
    Sci Rep, 2024 Jul 09;14(1):15763.
    PMID: 38982129 DOI: 10.1038/s41598-024-66603-y
    The timely identification of autism spectrum disorder (ASD) in children is imperative to prevent potential challenges as they grow. When sharing data related to autism for an accurate diagnosis, safeguarding its security and privacy is a paramount concern to fend off unauthorized access, modification, or theft during transmission. Researchers have devised diverse security and privacy models or frameworks, most of which often leverage proprietary algorithms or adapt existing ones to address data leakage. However, conventional anonymization methods, although effective in the sanitization process, proved inadequate for the restoration process. Furthermore, despite numerous scholarly contributions aimed at refining the restoration process, the accuracy of restoration remains notably deficient. Based on the problems identified above, this paper presents a novel approach to data restoration for sanitized sensitive autism datasets with improved performance. In the prior study, we constructed an optimal key for the sanitization process utilizing the proposed Enhanced Combined PSO-GWO framework. This key was implemented to conceal sensitive autism data in the database, thus avoiding information leakage. In this research, the same key was employed during the data restoration process to enhance the accuracy of the original data recovery. Therefore, the study enhanced the restoration process for ASD data's security and privacy by utilizing an optimal key produced via the Enhanced Combined PSO-GWO framework. When compared to existing meta-heuristic algorithms, the simulation results from the autism data restoration experiments demonstrated highly competitive accuracies with 99.90%, 99.60%, 99.50%, 99.25%, and 99.70%, respectively. Among the four types of datasets used, this method outperforms other existing methods on the 30-month autism children dataset, mostly.
  17. Adamu H, Bello U, IbrahimTafida U, Garba ZN, Galadima A, Lawan MM, et al.
    J Environ Manage, 2024 Nov;370:122543.
    PMID: 39305881 DOI: 10.1016/j.jenvman.2024.122543
    Soil pollution by microplastics (MPs) is an escalating environmental crisis with far-reaching consequences. However, current research on the degradation and/or remediation of MPs has mainly focused on water-simulated environments, with little attention given to soil MPs. Therefore, the review explores such terrestrial territory, exploring the potential of biodegradation and novel photocatalytic technologies for MPs degradation/remediation in soil. This review comprehensively investigates the potential of biological and photocatalytic approaches for soil MPs degradation and remediation. A temporal analysis of research from 2004 to 2024 highlights the increasing focus on this critical issue. The review explores the biocatalytic roles of diverse enzymes, including cutinase, PETase, MHETase, hydrolase, lipase, laccase, lignin peroxidase, and Mn-peroxidase, in MPs degradation. Strategies for enzyme engineering, such as protein engineering and immobilization, are explored to enhance catalytic efficiency. The potential for developing enzyme consortia for optimized MP degradation is also discussed. Photocatalytic remediation using TiO2, ZnO, clay, hydrogel, and other photocatalysts is examined, emphasizing their mechanisms and effectiveness. Computational modeling is proposed to deepen understanding of soil MPs-catalyst interactions, primarily aiming to develop novel catalysts tailored for soil environments for environmental safety and sustainable restoration. A comparative analysis of biological and photocatalytic approaches evaluates their environmental implications and the potential for synergistic combinations, with emphasis on soil quality protection, restoration and impact on soil ecosystems. Hence, this review accentuates the urgent need for innovative solutions to address MPs pollution in soil and provides a foundational understanding of the current knowledge gaps, as well as paves the way for future research and development.
  18. Febriza A, Usman F, Rasyid AUM, Idrus HH, Mokhtar MH
    PeerJ, 2024;12:e17890.
    PMID: 39148677 DOI: 10.7717/peerj.17890
    The increasing problem of antibiotic resistance in bacteria leads to an urgent need for new antimicrobial agents. Alternative treatments for bacterial infections need to be explored to tackle this issue. Plant-based substances are emerging as promising options. Manilkara zapota L. contains compounds with antibiotic activities, and anti-inflammatory, antitumor, antipyretic, and antioxidant properties. It has medicinal properties and contains bioactive compounds, like tannins, flavonoids, and triterpenoids. This review aimed to comprehensively evaluate the existing literature on the potential medicinal and therapeutic benefits of M. zapota in bacterial infections by utilizing data from in vivo and in vitro studies. M. zapota has the potential to be a nutritional source of antimicrobial food. Numerous preclinical studies have demonstrated the antibacterial activities of M. zapota and its components. The antibacterial mechanisms of this fruit could interact with bacterial cell structures such as cell walls or membranes.
  19. Usman MS, Hussein MZ, Kura AU, Fakurazi S, Masarudin MJ, Ahmad Saad FF
    Molecules, 2018 Feb 24;23(2).
    PMID: 29495251 DOI: 10.3390/molecules23020500
    We have synthesized a graphene oxide (GO)-based theranostic nanodelivery system (GOTS) for magnetic resonance imaging (MRI) using naturally occurring protocatechuic acid (PA) as an anticancer agent and gadolinium (III) nitrate hexahydrate (Gd) as the starting material for a contrast agent,. Gold nanoparticles (AuNPs) were subsequently used as second diagnostic agent. The GO nanosheets were first prepared from graphite via the improved Hummer's protocol. The conjugation of the GO and the PA was done via hydrogen bonding and π-π stacking interactions, followed by surface adsorption of the AuNPs through electrostatic interactions. GAGPA is the name given to the nanocomposite obtained from Gd and PA conjugation. However, after coating with AuNPs, the name was modified to GAGPAu. The physicochemical properties of the GAGPA and GAGPAu nanohybrids were studied using various characterization techniques. The results from the analyses confirmed the formation of the GOTS. The powder X-ray diffraction (PXRD) results showed the diffractive patterns for pure GO nanolayers, which changed after subsequent conjugation of the Gd and PA. The AuNPs patterns were also recorded after surface adsorption. Cytotoxicity and magnetic resonance imaging (MRI) contrast tests were also carried out on the developed GOTS. The GAGPAu was significantly cytotoxic to the human liver hepatocellular carcinoma cell line (HepG2) but nontoxic to the standard fibroblast cell line (3T3). The GAGPAu also appeared to possess higher T1 contrast compared to the pure Gd and water reference. The GOTS has good prospects of serving as future theranostic platform for cancer chemotherapy and diagnosis.
  20. Usman MS, Hussein MZ, Fakurazi S, Masarudin MJ, Ahmad Saad FF
    PLoS One, 2018;13(7):e0200760.
    PMID: 30044841 DOI: 10.1371/journal.pone.0200760
    We have synthesized a bimodal theranostic nanodelivery system (BIT) that is based on graphene oxide (GO) and composed of a natural chemotherapeutic agent, chlorogenic acid (CA) used as the anticancer agent, while gadolinium (Gd) and gold nanoparticles (AuNPs) were used as contrast agents for magnetic resonance imaging (MRI) modality. The CA and Gd guest agents were simultaneously loaded on the GO nanolayers using chemical interactions, such as hydrogen bonding and π-π non-covalent interactions to form GOGCA nanocomposite. Subsequently, the AuNPs were doped on the surface of the GOGCA by means of electrostatic interactions, which resulted in the BIT. The physico-chemical studies of the BIT affirmed its successful development. The X-ray diffractograms (XRD) collected of the various stages of BIT synthesis showed the successive development of the hybrid system, while 90% of the chlorogenic acid was released in phosphate buffer solution (PBS) at pH 4.8. This was further reaffirmed by the in vitro evaluations, which showed stunted HepG2 cancer cells growth against the above 90% cell growth in the control cells. A reverse case was recorded for the 3T3 normal cells. Further, the acquired T1-weighted image of the BIT doped samples obtained from the MRI indicated contrast enhancement in comparison with the plain Gd and water references. The abovementioned results portray our BIT as a promising future chemotherapeutic for anticancer treatment with diagnostic modalities.
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links