MATERIALS & METHODS: BZD9L1 was tested against metastatic CRC cell lines to evaluate cytotoxicity, cell cycle and apoptosis, senescence, apoptosis related genes and protein expressions, as well as effect against major cancer signaling pathways.
RESULTS & CONCLUSION: BZD9L1 reduced the viability, cell migration and colony forming ability of both HCT 116 and HT-29 metastatic CRC cell lines through apoptosis. BZD9L1 regulated major cancer pathways differently in CRC with different mutation profiles. BZD9L1 exhibited anticancer activities as a cytotoxic drug in CRC and as a promising therapeutic strategy in CRC treatment.
OBJECTIVE: The aim of this study was to compare the effect of paclitaxel loaded PLGA nanoparticle (PTX-NPs) on the cytotoxicity and apoptosis of the different MDA-MB type of cell lines.
METHOD: PTX-NPs were prepared by nanoprecipitation method and characterized earlier. The cytotoxicity of PTX-NPs was evaluated by MTT and LDH assay, later apoptosis was calculated by flow cytometry analysis.
RESULTS: The prepared NP size of 317.5 nm and zetapontial of -12.7 mV showed drug release of 89.1 % at 48 h. MDA-MB-231 type cell showed significant cytotoxicity by MTT method of 47.4 ± 1.2 % at 24 h, 34.6 ± 0.8 % at 48 h and 23.5 ± 0.5 % at 72 h and LDH method of 35.9 ± 1.5 % at 24 h, 25.4 ± 0.6 % at 48 h and 19.8 ± 2.2 % at 72 h with apoptosis of 47.3 ± 0.4 %.
CONCLUSION: We have found that PTX-NPs showed the cytotoxic effect on all the MDA-MB cancer cell lines and showed potent anticancer activities against MDA-MB-231 cell line via induction of apoptosis.
METHODOLOGY: Sprague-Dawley rats were divided into 5 groups of 33 each. Group 1 was administered intravitreally with PBS and group 2 was similarly injected with NMDA (160 nmol). Groups 3, 4 and 5 were injected with TAU (320 nmol) 24 hours before (pre-treatment), in combination (co-treatment) and 24 hours after (post-treatment) NMDA exposure respectively. Seven days after injection, rats were sacrificed; eyes were enucleated, fixed and processed for morphometric analysis, TUNEL and caspase-3 staining. Optic nerve morphology assessment was done using toluidine blue staining. The estimation of BDNF, pro/anti-apoptotic factors (Bax/Bcl-2) and caspase-3 activity in retina was done using ELISA technique.
RESULTS: Severe degenerative changes were observed in retinae after intravitreal NMDA exposure. The retinal morphology in the TAU pre-treated group appeared more similar to the control retinae and demonstrated a higher number of nuclei than the NMDA group both per 100 μm length (by 1.5-fold, p
RESULTS: By using MAR/SAR recognition signature (MRS), potential MAR/SAR sites were predicted in the AF9 gene. The predicted MAR/SAR sites precisely match to the experimentally determined MAR/SARs. Hydrogen peroxide (H2O2) was used to induce apoptosis in normal nasopharyngeal epithelial cells (NP69) and NPC cells (HK1). Nested inverse polymerase chain reaction was employed to identify the AF9 gene cleavages. In the SAR region, the gene cleavage frequency of H2O2-treated cells was significantly higher than that of the non-treated cells. A few chromosomal breakages were detected within the AF9 region which was previously found to be involved in the mixed lineage leukaemia (MLL)-AF9 translocation in an acute lymphoblastic leukaemia patient. As for the non-SAR region, no significant difference in the gene cleavage frequency was found between the untreated control and H2O2-treated cells. Furthermore, H2O2-induced cleavages within the SAR region were reduced by caspase-3 inhibitor, which indirectly inhibits CAD.
CONCLUSIONS: These results reaffirm our previous findings that oxidative stress-induced apoptosis could be one of the potential mechanisms underlying chromosome breakages in nasopharyngeal epithelial cells. MAR/SAR may play a vital role in defining the location of chromosomal breakages mediated by oxidative stress-induced apoptosis, where CAD is the major nuclease.
METHODS: Human oral cancer cell lines (HSC2, YD10B, YD38, YD9, and YD32) were used in this study. BrdU incorporation, cell cycle and annexin-V/PI staining were all evaluated using flow cytometry to determine the extent to which O. octandra leaf extract inhibits cell proliferation and induces apoptosis. Cell viability and reactive oxygen species (ROS) were also measured in order to investigate the anti-cancer effects of O. octandra extracts. Western blotting was performed to detect cell cycle related protein such as cyclin d1 and cdk4, and to detect apoptosis-related proteins such as Bcl-2, Bcl-XL, Bax, Caspase-9, Cleaved caspase-3, Fas, Caspase-8, and Bid.
RESULTS: Leaf extract of O. octandra reduced oral squamous cell carcinoma (OSCC) cell viability in a dose-dependent manner. Leaf extract of O. octandra has non-toxic in normal keratinocytes. Also, O. octandra extract interrupted the DNA replication via G1 phase arrests, and this effect was independent of ROS generation. In the apoptosis-related experiments, the population of annexin V-positive cells increased upon treatment with O. octandra extract. Furthermore, the expression of anti-apoptotic protein (Bcl-2 and Bcl-xL) was decreased, whereas the expression of cleaved caspase-3 protein was increased in O. octandra-treated OSCC cells.
CONCLUSIONS: The results suggest that a leaf extract of O. octandra inhibited the proliferation of OSCC cells through G1 phase arrest and interrupting DNA replication. The leaf extract of O. octandra could trigger the apoptotic response via caspase 3 activation in OSCC cells. These results suggest that O. octandra has the potential to be developed as an alternative medicine for treating OSCC.
OBJECTIVE: In order to investigate the influence between electron density in conjugated π-systems and biological activities, different withdrawing substituents, namely Nitro (NO2), Cyano (C≡N) and trifluoromethyl (CF3) were introduced in the chalcone-based molecular system.
METHODS: All the derivatives were then tested on MCF-7 cell line using the fluorescence microscopy-based cytotoxicity analyses.
RESULTS: The preliminary findings showed that both -NO2 and -CF3 substituents revealed their potential to inhibit the growth of MCF-7 with IC;50 values of 14.75 and 13.75 μg/ml, respectively. In addition, the morphological changes of MCF-7 cells were observed in response to alkoxy substituted chalcone treatment through an induction of apoptosis pathway with cell blebbing, phosphatidylserine exposure and autophagic activity with acidification of lysosomal structure. Intermolecular interaction based on in silico investigation on nitro, trifluoromethyl and cyano based chalcones exhibited several types of interactions with tumor necrosis factor receptor (PDB: 1EXT) protein and high hydrogen bond in the molecule-receptor interaction have given significant impact towards their toxicity on MCF-7 cells.
CONCLUSION: Significantly, these types of chalcones exhibited ideal and high potential to be further developed as anti-cancer agents.