Displaying publications 161 - 180 of 489 in total

Abstract:
Sort:
  1. Bharti K, Majeed AB, Prakash A
    Biometals, 2016 Jun;29(3):399-409.
    PMID: 26923568 DOI: 10.1007/s10534-016-9922-8
    Metal ionophores are considered as potential anti-dementia agents, and some are currently undergoing clinical trials. Many metals are known to accumulate and distribute abnormally in the aging brain. Alterations in zinc metal homeostasis in the glutaminergic synapse could contribute to ageing and the pathophysiology of Alzheimer's disease (AD). The present study was designed to investigate the effect of metal ionophores on long term administration of zinc in D-galactose induced senescent mice. The ageing model was established by combined administration of zinc and D-galactose to mice for 6 weeks. A novel metal ionophore, PBT-2 was given daily to zinc-induced d-galactose senescent mice. The cognitive behaviour of mice was monitored using the Morris Water Maze. The anti-oxidant status and amyloidogenic activity in the ageing mouse was measured by determining mito-oxidative parameters and deposition of amyloid β (Aβ) in the brain. Systemic administration of both zinc and D-galactose significantly produced memory deficits, mito-oxidative damage, heightened acetylcholinesterase enzymatic activity and deposition of amyloid-β. Treatment with PBT-2 significantly improved behavioural deficits, biochemical profiles, cellular damage, and curbed the deposition of APP in zinc-induced senescent mice. These findings suggest that PBT-2, acting as a metal protein attenuating compound, may be helpful in the prevention of AD or alleviation of ageing.
    Matched MeSH terms: Cognition Disorders/chemically induced*; Cognition Disorders/metabolism; Cognition Disorders/prevention & control*
  2. Cacha LA, Poznanski RR
    J Integr Neurosci, 2014 Jun;13(2):253-92.
    PMID: 25012712 DOI: 10.1142/S0219635214400081
    A theoretical framework is developed based on the premise that brains evolved into sufficiently complex adaptive systems capable of instantiating genomic consciousness through self-awareness and complex interactions that recognize qualitatively the controlling factors of biological processes. Furthermore, our hypothesis assumes that the collective interactions in neurons yield macroergic effects, which can produce sufficiently strong electric energy fields for electronic excitations to take place on the surface of endogenous structures via alpha-helical integral proteins as electro-solitons. Specifically the process of radiative relaxation of the electro-solitons allows for the transfer of energy via interactions with deoxyribonucleic acid (DNA) molecules to induce conformational changes in DNA molecules producing an ultra weak non-thermal spontaneous emission of coherent biophotons through a quantum effect. The instantiation of coherent biophotons confined in spaces of DNA molecules guides the biophoton field to be instantaneously conducted along the axonal and neuronal arbors and in-between neurons and throughout the cerebral cortex (cortico-thalamic system) and subcortical areas (e.g., midbrain and hindbrain). Thus providing an informational character of the electric coherence of the brain - referred to as quantum coherence. The biophoton field is realized as a conscious field upon the re-absorption of biophotons by exciplex states of DNA molecules. Such quantum phenomenon brings about self-awareness and enables objectivity to have access to subjectivity in the unconscious. As such, subjective experiences can be recalled to consciousness as subjective conscious experiences or qualia through co-operative interactions between exciplex states of DNA molecules and biophotons leading to metabolic activity and energy transfer across proteins as a result of protein-ligand binding during protein-protein communication. The biophoton field as a conscious field is attributable to the resultant effect of specifying qualia from the metabolic energy field that is transported in macromolecular proteins throughout specific networks of neurons that are constantly transforming into more stable associable representations as molecular solitons. The metastability of subjective experiences based on resonant dynamics occurs when bottom-up patterns of neocortical excitatory activity are matched with top-down expectations as adaptive dynamic pressures. These dynamics of on-going activity patterns influenced by the environment and selected as the preferred subjective experience in terms of a functional field through functional interactions and biological laws are realized as subjectivity and actualized through functional integration as qualia. It is concluded that interactionism and not information processing is the key in understanding how consciousness bridges the explanatory gap between subjective experiences and their neural correlates in the transcendental brain.
    Matched MeSH terms: Cognition/physiology
  3. Cacha LA, Poznanski RR
    J Integr Neurosci, 2011 Dec;10(4):423-37.
    PMID: 22262534
    In earlier models, synaptic plasticity forms the basis for cellular signaling underlying learning and memory. However, synaptic computation of learning and memory in the brain remains controversial. In this paper, we discuss ways in which synaptic plasticity remodels subcellular networks by deflecting trajectories in neuronal state-space as regulating patterns for the synthesis of dynamic continuity that form cognitive networks of associable representations through endogenous dendritic coding to consolidate memory.
    Matched MeSH terms: Cognition/physiology*
  4. Poznanski RR
    J Integr Neurosci, 2009 Sep;8(3):345-69.
    PMID: 19938210
    The continuity of the mind is suggested to mean the continuous spatiotemporal dynamics arising from the electrochemical signature of the neocortex: (i) globally through volume transmission in the gray matter as fields of neural activity, and (ii) locally through extrasynaptic signaling between fine distal dendrites of cortical neurons. If the continuity of dynamical systems across spatiotemporal scales defines a stream of consciousness then intentional metarepresentations as templates of dynamic continuity allow qualia to be semantically mapped during neuroimaging of specific cognitive tasks. When interfaced with a computer, such model-based neuroimaging requiring new mathematics of the brain will begin to decipher higher cognitive operations not possible with existing brain-machine interfaces.
    Matched MeSH terms: Cognition/physiology*
  5. Parida S, Dehuri S, Cho SB, Cacha LA, Poznanski RR
    J Integr Neurosci, 2015 Sep;14(3):355-68.
    PMID: 26455882 DOI: 10.1142/S0219635215500223
    Functional magnetic resonance imaging (fMRI) makes it possible to detect brain activities in order to elucidate cognitive-states. The complex nature of fMRI data requires under-standing of the analyses applied to produce possible avenues for developing models of cognitive state classification and improving brain activity prediction. While many models of classification task of fMRI data analysis have been developed, in this paper, we present a novel hybrid technique through combining the best attributes of genetic algorithms (GAs) and ensemble decision tree technique that consistently outperforms all other methods which are being used for cognitive-state classification. Specifically, this paper illustrates the combined effort of decision-trees ensemble and GAs for feature selection through an extensive simulation study and discusses the classification performance with respect to fMRI data. We have shown that our proposed method exhibits significant reduction of the number of features with clear edge classification accuracy over ensemble of decision-trees.
    Matched MeSH terms: Cognition
  6. Cacha LA, Parida S, Dehuri S, Cho SB, Poznanski RR
    J Integr Neurosci, 2016 Dec;15(4):593-606.
    PMID: 28093025 DOI: 10.1142/S0219635216500345
    The huge number of voxels in fMRI over time poses a major challenge to for effective analysis. Fast, accurate, and reliable classifiers are required for estimating the decoding accuracy of brain activities. Although machine-learning classifiers seem promising, individual classifiers have their own limitations. To address this limitation, the present paper proposes a method based on the ensemble of neural networks to analyze fMRI data for cognitive state classification for application across multiple subjects. Similarly, the fuzzy integral (FI) approach has been employed as an efficient tool for combining different classifiers. The FI approach led to the development of a classifiers ensemble technique that performs better than any of the single classifier by reducing the misclassification, the bias, and the variance. The proposed method successfully classified the different cognitive states for multiple subjects with high accuracy of classification. Comparison of the performance improvement, while applying ensemble neural networks method, vs. that of the individual neural network strongly points toward the usefulness of the proposed method.
    Matched MeSH terms: Cognition/physiology*
  7. Ong LC, Chandran V, Lim YY, Chen AH, Poh BK
    Singapore Med J, 2010 Mar;51(3):247-52.
    PMID: 20428748
    The aim of this study was to identify factors associated with poor academic achievement during the early school years.
    Matched MeSH terms: Cognition
  8. Hui Meng Er, Srinivasan Ramamurthy, Peter CK Pook
    MyJurnal
    Background: The widespread use of multiple choice questions (MCQ) in examinations is attributed to its logistical advantage and broad coverage of content within a short duration. The end-of-semester examinations for several modules in the pharmacy programme previously employed a combination of written examination tools including MCQ, short answer questions (SAQ) or essays for assessing learning outcomes in the cognitive domain. Concerns regarding assessment fatigue and subjectivity in marking have led to a review of the assessment formats in the examinations. Various types of MCQ were consequently introduced as the only assessment tool. This study was conducted to evaluate the performance of students in the examinations as a result of the change.

    Methodology: Analyses were carried out on the end-ofsemester examination results of two cohorts of students for each module, one based on a combination of MCQ, SAQ or essay and the other based on MCQ alone. The class means were compared, and t-test was used to determine the difference between the performances.

    Results: Although the difference in the mean scores of the two groups is statistically significant in 13 of the 20 modules, the difference is less than 5% in 10 modules.

    Conclusion: The findings provide evidence that wellconstructed MCQ can effectively assess cognitive skills.
    Matched MeSH terms: Cognition
  9. Wong DW, Soga T, Parhar IS
    Front Genet, 2015;6:281.
    PMID: 26442099 DOI: 10.3389/fgene.2015.00281
    Sexual dysfunction and cognitive deficits are markers of the aging process. Mammalian sirtuins (SIRT), encoded by sirt 1-7 genes, are known as aging molecules which are sensitive to serotonin (5-hydroxytryptamine, 5-HT). Whether the 5-HT system regulates SIRT in the preoptic area (POA), which could affect reproduction and cognition has not been examined. Therefore, this study was designed to examine the effects of citalopram (CIT, 10 mg/kg for 4 weeks), a potent selective-serotonin reuptake inhibitor and aging on SIRT expression in the POA of male mice using real-time PCR and immunocytochemistry. Age-related increases of sirt1, sirt4, sirt5, and sirt7 mRNA levels were observed in the POA of 52 weeks old mice. Furthermore, 4 weeks of chronic CIT treatment started at 8 weeks of age also increased sirt2 and sirt4 mRNA expression in the POA. Moreover, the number of SIRT4 immuno-reactive neurons increased with aging in the medial septum area (12 weeks = 1.00 ± 0.15 vs. 36 weeks = 1.68 ± 0.14 vs. 52 weeks = 1.54 ± 0.11, p < 0.05). In contrast, the number of sirt4-immunopositive cells did not show a statistically significant change with CIT treatment, suggesting that the increase in sirt4 mRNA levels may occur in cells in which sirt4 is already being expressed. Taken together, these studies suggest that CIT treatment and the process of aging utilize the serotonergic system to up-regulate SIRT4 in the POA as a common pathway to deregulate social cognitive and reproductive functions.
    Matched MeSH terms: Cognition; Cognition Disorders
  10. Huan NJ, Palaniappan R
    J Neural Eng, 2004 Sep;1(3):142-50.
    PMID: 15876633
    In this paper, we have designed a two-state brain-computer interface (BCI) using neural network (NN) classification of autoregressive (AR) features from electroencephalogram (EEG) signals extracted during mental tasks. The main purpose of the study is to use Keirn and Aunon's data to investigate the performance of different mental task combinations and different AR features for BCI design for individual subjects. In the experimental study, EEG signals from five mental tasks were recorded from four subjects. Different combinations of two mental tasks were studied for each subject. Six different feature extraction methods were used to extract the features from the EEG signals: AR coefficients computed with Burg's algorithm, AR coefficients computed with a least-squares (LS) algorithm and adaptive autoregressive (AAR) coefficients computed with a least-mean-square (LMS) algorithm. All the methods used order six applied to 125 data points and these three methods were repeated with the same data but with segmentation into five segments in increments of 25 data points. The multilayer perceptron NN trained by the back-propagation algorithm (MLP-BP) and linear discriminant analysis (LDA) were used to classify the computed features into different categories that represent the mental tasks. We compared the classification performances among the six different feature extraction methods. The results showed that sixth-order AR coefficients with the LS algorithm without segmentation gave the best performance (93.10%) using MLP-BP and (97.00%) using LDA. The results also showed that the segmentation and AAR methods are not suitable for this set of EEG signals. We conclude that, for different subjects, the best mental task combinations are different and proper selection of mental tasks and feature extraction methods are essential for the BCI design.
    Matched MeSH terms: Cognition/physiology*; Pattern Recognition, Automated/methods*
  11. Paudel YN, Shaikh MF, Shah S, Kumari Y, Othman I
    Eur J Pharmacol, 2018 Oct 15;837:145-155.
    PMID: 30125565 DOI: 10.1016/j.ejphar.2018.08.020
    Epilepsy is a devastating condition affecting around 70 million people worldwide. Moreover, the quality of life of people with epilepsy (PWE) is worsened by a series of comorbidities. The neurobehavioral comorbidities discussed herein share a reciprocal and complex relationship with epilepsy, which ultimately complicates the treatment process in PWE. Understanding the mechanistic pathway by which these comorbidities are associated with epilepsy might be instrumental in developing therapeutic interventions. Inflammatory cytokine signaling in the brain regulates important brain functions including neurotransmitter metabolism, neuroendocrine function, synaptic plasticity, dopaminergic transmission, the kynurenine pathway, and affects neurogenesis as well as the neural circuitry of moods. In this review, we hypothesize that the complex relationship between epilepsy and its related comorbidities (cognitive impairment, depression, anxiety, autism, and schizophrenia) can be unraveled through the inflammatory mechanism that plays a prominent role in all these individual conditions. An ample amount of evidence is available reporting the role of inflammation in epilepsy and all individual comorbid condition but their complex relationship with epilepsy has not yet been explored through the prospective of inflammatory pathway. Our review suggests that epilepsy and its neurobehavioral comorbidities are associated with elevated levels of several key inflammatory markers. This review also sheds light on the mechanistic association between epilepsy and its neurobehavioral comorbidities. Moreover, we analyzed several anti-inflammatory therapies available for epilepsy and its neurobehavioral comorbidities. We suggest, these anti-inflammatory therapies might be a possible intervention and could be a promising strategy for preventing epileptogenesis and its related neurobehavioral comorbidities.
    Matched MeSH terms: Cognition
  12. Retinasamy T, Shaikh MF, Kumari Y, Othman I
    Front Pharmacol, 2019;10:1216.
    PMID: 31736744 DOI: 10.3389/fphar.2019.01216
    Alzheimer's disease (AD) is a chronic neurodegenerative brain disease which is characterized by impairment in cognitive functioning. Orthosiphon stamineus (OS) Benth. (Lamiaceae) is a medicinal plant found around Southeast Asia that has been employed as treatments for various diseases. OS extract contains many active compounds that have been shown to possess various pharmacological properties whereby in vitro studies have demonstrated neuroprotective as well as cholinesterase inhibitory effects. This study, therefore aimed at determining whether this Malaysian plant derived flavonoid can reverse scopolamine induced learning and memory dysfunction in the novel object recognition (NOR) test and the elevated plus maze (EPM) test. In the present study, rats were treated once daily with OS 50 mg/kg, 100 mg/kg, 200 mg/kg and donepezil 1 mg/kg via oral dosing and were given intraperitoneal (ip) injection of scopolamine 1 mg/kg daily to induce cognitive deficits. Rats were subjected to behavioral analysis to assess learning and memory functions and hippocampal tissues were extracted for gene expression and immunohistochemistry studies. All the three doses demonstrated improved scopolamine-induced impairment by showing shortened transfer latency as well as the higher inflexion ratio when compared to the negative control group. OS extract also exhibited memory-enhancing activity against chronic scopolamine-induced memory deficits in the long-term memory novel object recognition performance as indicated by an increase in the recognition index. OS extract was observed to have modulated the mRNA expression of CREB1, BDNF, and TRKB genes and pretreatment with OS extract were observed to have increased the immature neurons against hippocampal neurogenesis suppressed by scopolamine, which was confirmed by the DCX-positive stained cells. These research findings suggest that the OS ethanolic extract demonstrated an improving effect on memory and hence could serve as a potential therapeutic target for the treatment of neurodegenerative diseases like AD.
    Matched MeSH terms: Cognition
  13. Wan SN, Thiam CN, Ang QX, Engkasan J, Ong T
    PLoS One, 2023;18(8):e0289379.
    PMID: 37531398 DOI: 10.1371/journal.pone.0289379
    Hospitalization has been associated with the development of sarcopenia. This study aimed to examine the new incidences of hospital sarcopenia, associated risk factors and health outcomes, as defined by internationally recognized diagnostic criteria in hospitalized older people. Pre-defined search terms were run through five databases. Six studies that assessed sarcopenia on two separate time points during hospitalization on older inpatients were included. Prevalence of sarcopenia varied from 14.1% to 55% depending on diagnostic criteria and cut-off points used. New sarcopenia occurred between 12% to 38.7% patients following hospitalization. Risk factors were older age, longer duration of bed rest, lower baseline body mass index, cognitive impairment and activities of daily living disability. None of the studies reported health outcomes associated with newly developed sarcopenia in hospital.
    Matched MeSH terms: Cognition Disorders/complications
  14. Sanchez-Bezanilla S, Åberg ND, Crock P, Walker FR, Nilsson M, Isgaard J, et al.
    Int J Mol Sci, 2020 Jan 17;21(2).
    PMID: 31963456 DOI: 10.3390/ijms21020606
    Motor impairment is the most common and widely recognised clinical outcome after stroke. Current clinical practice in stroke rehabilitation focuses mainly on physical therapy, with no pharmacological intervention approved to facilitate functional recovery. Several studies have documented positive effects of growth hormone (GH) on cognitive function after stroke, but surprisingly, the effects on motor function remain unclear. In this study, photothrombotic occlusion targeting the motor and sensory cortex was induced in adult male mice. Two days post-stroke, mice were administered with recombinant human GH or saline, continuing for 28 days, followed by evaluation of motor function. Three days after initiation of the treatment, bromodeoxyuridine was administered for subsequent assessment of cell proliferation. Known neurorestorative processes within the peri-infarct area were evaluated by histological and biochemical analyses at 30 days post-stroke. This study demonstrated that GH treatment improves motor function after stroke by 50%-60%, as assessed using the cylinder and grid walk tests. Furthermore, the observed functional improvements occurred in parallel with a reduction in brain tissue loss, as well as increased cell proliferation, neurogenesis, increased synaptic plasticity and angiogenesis within the peri-infarct area. These findings provide new evidence about the potential therapeutic effects of GH in stroke recovery.
    Matched MeSH terms: Cognition
  15. James V, Samuel J, Kee CY, Ong GY
    Ultrasound J, 2020 Dec 03;12(1):51.
    PMID: 33270182 DOI: 10.1186/s13089-020-00199-y
    BACKGROUND: The presence of intra-abdominal calcification in the pediatric population can be due to a wide range of conditions. Calcification in the abdomen can be seen in normal or abnormal anatomical structures. In some patients, abnormal calcification points towards the pathology; whereas in others, calcification itself is the pathology. After a thorough history and clinical examination, point-of-care ultrasound (POCUS) would complement the assessment of acute abdominal pain, based on the list of differentials generated as per the abdominal region. The main objective of this article is to review commonly encountered causes of intra-abdominal calcifications in the pediatric population and help in clinical decision-making in a Pediatric Emergency Department.

    CASE PRESENTATION: We describe a series of pediatric patients who presented to the Pediatric Emergency Department with acute abdominal pain, in whom point-of-care ultrasound helped expedite the diagnosis by identifying varying types of calcification and associated sonological findings. For children who present to the Pediatric Emergency Department with significant abdominal pain, a rapid distinction between emergencies and non-emergencies is vital to decrease morbidity and mortality.

    CONCLUSIONS: In a child presenting to the Pediatric Emergency Department with abdominal pain, POCUS and the findings of calcifications can narrow or expand the differential diagnosis when integrated with history and physical exam, to a specific anatomic structure. Integrating these findings with additional sonological findings of an underlying pathology might raise sufficient concerns in the emergency physicians to warrant further investigations for the patient in the form of a formal radiological ultrasound and assist in the patient's early disposition. The use of POCUS might also help to categorize the type of calcification to one of the four main categories of intra-abdominal calcifications, namely concretions, conduit wall calcification, cyst wall calcification, and solid mass-type calcification. POCUS used thoughtfully can give a diagnosis and expand differential diagnosis, reduce cognitive bias, and reduce physician mental load. By integrating the use of POCUS with the history and clinical findings, it will be possible to expedite the management in children who present to the Pediatric Emergency Department with acute abdominal pain.

    Matched MeSH terms: Cognition
  16. Mohammed M, Omar N
    PLoS One, 2020;15(3):e0230442.
    PMID: 32191738 DOI: 10.1371/journal.pone.0230442
    The assessment of examination questions is crucial in educational institutes since examination is one of the most common methods to evaluate students' achievement in specific course. Therefore, there is a crucial need to construct a balanced and high-quality exam, which satisfies different cognitive levels. Thus, many lecturers rely on Bloom's taxonomy cognitive domain, which is a popular framework developed for the purpose of assessing students' intellectual abilities and skills. Several works have been proposed to automatically handle the classification of questions in accordance with Bloom's taxonomy. Most of these works classify questions according to specific domain. As a result, there is a lack of technique of classifying questions that belong to the multi-domain areas. The aim of this paper is to present a classification model to classify exam questions based on Bloom's taxonomy that belong to several areas. This study proposes a method for classifying questions automatically, by extracting two features, TFPOS-IDF and word2vec. The purpose of the first feature was to calculate the term frequency-inverse document frequency based on part of speech, in order to assign a suitable weight for essential words in the question. The second feature, pre-trained word2vec, was used to boost the classification process. Then, the combination of these features was fed into three different classifiers; K-Nearest Neighbour, Logistic Regression, and Support Vector Machine, in order to classify the questions. The experiments used two datasets. The first dataset contained 141 questions, while the other dataset contained 600 questions. The classification result for the first dataset achieved an average of 71.1%, 82.3% and 83.7% weighted F1-measure respectively. The classification result for the second dataset achieved an average of 85.4%, 89.4% and 89.7% weighted F1-measure respectively. The finding from this study showed that the proposed method is significant in classifying questions from multiple domains based on Bloom's taxonomy.
    Matched MeSH terms: Cognition/physiology*
  17. Malek F, Rani KA, Rahim HA, Omar MH
    Sci Rep, 2015;5:13206.
    PMID: 26286015 DOI: 10.1038/srep13206
    Individuals who report their sensitivity to electromagnetic fields often undergo cognitive impairments that they believe are due to the exposure of mobile phone technology. The aim of this study is to clarify whether short-term exposure at 1 V/m to the typical Global System for Mobile Communication and Universal Mobile Telecommunications System (UMTS) affects cognitive performance and physiological parameters (body temperature, blood pressure and heart rate). This study applies counterbalanced randomizing single blind tests to determine if sensitive individuals experience more negative health effects when they are exposed to base station signals compared with sham (control) individuals. The sample size is 200 subjects with 50.0% Idiopathic Environmental Intolerance attributed to electromagnetic fields (IEI-EMF) also known as sensitive and 50.0% (non-IEI-EMF). The computer-administered Cambridge Neuropsychological Test Automated Battery (CANTAB eclipse(TM)) is used to examine cognitive performance. Four tests are chosen to evaluate Cognitive performance in CANTAB: Reaction Time (RTI), Rapid Visual Processing (RVP), Paired Associates Learning (PAL) and Spatial Span (SSP). Paired sample t-test on the other hand, is used to examine the physiological parameters. Generally, in both groups, there is no statistical significant difference between the exposure and sham exposure towards cognitive performance and physiological effects (P's > 0.05).
    Matched MeSH terms: Cognition
  18. Lee WB, Fong GT, Dewhirst T, Kennedy RD, Yong HH, Borland R, et al.
    J Health Commun, 2015;20(10):1166-76.
    PMID: 26054867 DOI: 10.1080/10810730.2015.1018565
    Antismoking mass media campaigns are known to be effective as part of comprehensive tobacco control programs in high-income countries, but such campaigns are relatively new in low- and middle-income countries and there is a need for strong evaluation studies from these regions. This study examines Malaysia's first national antismoking campaign, TAK NAK. The data are from the International Tobacco Control Malaysia Survey, which is an ongoing cohort survey of a nationally representative sample of adult smokers (18 years and older; N = 2,006). The outcome variable was quit intentions of adult smokers, and the authors assessed the extent to which quit intentions may have been strengthened by exposure to the antismoking campaign. The authors also tested whether the impact of the campaign on quit intentions was related to cognitive mechanisms (increasing thoughts about the harm of smoking), affective mechanisms (increasing fear from the campaign), and perceived social norms (increasing perceived social disapproval about smoking). Mediational regression analyses revealed that thoughts about the harm of smoking, fear arousal, and social norms against smoking mediated the relation between TAK NAK impact and quit intentions. Effective campaigns should prompt smokers to engage in both cognitive and affective processes and encourage consideration of social norms about smoking in their society.
    Matched MeSH terms: Cognition
  19. Liu X, Soh KG, Omar Dev RD
    BMC Public Health, 2023 Jul 11;23(1):1332.
    PMID: 37434149 DOI: 10.1186/s12889-023-16221-6
    BACKGROUND: Latin dance is a well-liked physical activity. It has gained increasing attention as an exercise intervention for improving physical and mental health outcomes. This systematic review examines the effects of Latin dance on physical and mental health.

    METHODS: Preferred Reporting Items for Systematic Reviews and Meta-analysis (PRISMA) were used to report the data for this review. To gather research from the literature, we used recognized academic and scientific databases such SportsDiscus with Full Text, PsycINFO, Cochrane, Scopus, PubMed, and Web of Science. The systematic review only included 22 studies out of the 1,463 that matched all inclusion criteria. The PEDro scale was used to rate each study's quality. 22 research received scores between 3 and 7.

    RESULTS: Latin dance has been demonstrated to promote physical health by helping people lose weight, improve cardiovascular health, increase muscle strength and tone, and improve flexibility and balance. Furthermore, Latin dance can benefit mental health by reducing stress, improving mood, social connection, and cognitive function.

    CONCLUSIONS: Finding from this systematic review provide substantial evidence that Latin dance has effect on physical and mental health. Latin dance has the potential to be a powerful and pleasurable public health intervention.

    SYSTEMATIC REVIEW REGISTRATION: CRD42023387851, https://www.crd.york.ac.uk/prospero .

    Matched MeSH terms: Cognition
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links