METHODS: The study included 382 participants (252 normal voices and 130 dysphonic voices) in the proposed database MVPD. Complete data were obtained for both groups, including voice samples, laryngostroboscopy videos, and acoustic analysis. The diagnoses of patients with dysphonia were obtained. Each voice sample was anonymized using a code that was specific to each individual and stored in the MVPD. These voice samples were used to train and test the proposed OSELM algorithm. The performance of OSELM was evaluated and compared with other classifiers in terms of the accuracy, sensitivity, and specificity of detecting and differentiating dysphonic voices.
RESULTS: The accuracy, sensitivity, and specificity of OSELM in detecting normal and dysphonic voices were 90%, 98%, and 73%, respectively. The classifier differentiated between structural and non-structural vocal fold pathology with accuracy, sensitivity, and specificity of 84%, 89%, and 88%, respectively, while it differentiated between malignant and benign lesions with an accuracy, sensitivity, and specificity of 92%, 100%, and 58%, respectively. Compared to other classifiers, OSELM showed superior accuracy and sensitivity in detecting dysphonic voices, differentiating structural versus non-structural vocal fold pathology, and between malignant and benign voice pathology.
CONCLUSION: The OSELM algorithm exhibited the highest accuracy and sensitivity compared to other classifiers in detecting voice pathology, classifying between malignant and benign lesions, and differentiating between structural and non-structural vocal pathology. Hence, it is a promising artificial intelligence that supports an online application to be used as a screening tool to encourage people to seek medical consultation early for a definitive diagnosis of voice pathology.
METHODS: A cohort of 4,240 Sepsis-3 patients was analyzed, with 783 experiencing 30-day mortality and 3,457 surviving. Fifteen biomarkers were selected using feature ranking methods, including Extreme Gradient Boosting (XGBoost), Random Forest, and Extra Tree, and the Logistic Regression (LR) model was used to assess their individual predictability with a fivefold cross-validation approach for the validation of the prediction. The dataset was balanced using the SMOTE-TOMEK LINK technique, and a stacking-based meta-classifier was used for 30-day mortality prediction. The SHapley Additive explanations analysis was performed to explain the model's prediction.
RESULTS: Using the LR classifier, the model achieved an area under the curve or AUC score of 0.99. A nomogram provided clinical insights into the biomarkers' significance. The stacked meta-learner, LR classifier exhibited the best performance with 95.52% accuracy, 95.79% precision, 95.52% recall, 93.65% specificity, and a 95.60% F1-score.
CONCLUSIONS: In conjunction with the nomogram, the proposed stacking classifier model effectively predicted 30-day mortality in Sepsis patients. This approach holds promise for early intervention and improved outcomes in treating Sepsis cases.
DESIGN: We introduced the shared learning experience in clinical pharmacy and pharmacotherapeutic practice experiences involving 87 third-year and 51 fourth-year students. Both student groups undertook the practice experiences together, with third-year students working in smaller groups mentored by fourth-year students.
ASSESSMENT: A majority of the students (> 75%) believed that they learned to work as a team during their practice experiences and that the shared learning approach provided an opportunity to practice their communication skills. Similarly, most respondents (> 70%) agreed that the new approach would help them become effective members of the healthcare team and would facilitate their professional relationships in future practice. Almost two-thirds of the students believed that the shared learning enhanced their ability to understand clinical problems. However, about 31% of the pharmacy students felt that they could have learned clinical problem-solving skills equally well working only with peers from their own student group.
CONCLUSIONS: The pharmacy students in the current study generally believed that the shared-learning approach enhanced their ability to understand clinical problems and improved their communication and teamwork skills. Both groups of students were positive that they had acquired some skills through the shared-learning approach.
METHODS: Eighteen students with prior experience in traditional PDPBL processes participated in the study, divided into three groups to perform PDPBL sessions with various triggers from pharmaceutical chemistry, pharmaceutics, and clinical pharmacy fields, while utilizing chat AI provided by ChatGPT to assist with data searching and problem-solving. Questionnaires were used to collect data on the impact of ChatGPT on students' satisfaction, engagement, participation, and learning experience during the PBL sessions.
RESULTS: The survey revealed that ChatGPT improved group collaboration and engagement during PDPBL, while increasing motivation and encouraging more questions. Nevertheless, some students encountered difficulties understanding ChatGPT's information and questioned its reliability and credibility. Despite these challenges, most students saw ChatGPT's potential to eventually replace traditional information-seeking methods.
CONCLUSIONS: The study suggests that ChatGPT has the potential to enhance PDPBL in pharmacy education. However, further research is needed to examine the validity and reliability of the information provided by ChatGPT, and its impact on a larger sample size.
METHODS: MiRNA profiling was conducted on plasma samples from 18 patients with primary aldosteronism taken during adrenal venous sampling on an Illumina MiSeq platform. Bioinformatics and machine learning identified 9 miRNAs for validation by reverse transcription real-time quantitative polymerase chain reaction. Validation was performed on a cohort consisting of 108 patients with known subdifferentiation. A 30-patient subset of the validation cohort involved both adrenal venous sampling and peripheral, the rest only peripheral samples. A neural network model was used for feature selection and comparison between adrenal venous sampling and peripheral samples, while a deep-learning model was used for classification.
RESULTS: Our model identified 10 miRNA combinations achieving >85% accuracy in distinguishing unilateral primary aldosteronism and bilateral adrenal hyperplasia on a 30-sample subset, while also confirming the suitability of peripheral samples for analysis. The best model, involving 6 miRNAs, achieved an area under curve of 87.1%. Deep learning resulted in 100% accuracy on the subset and 90.9% sensitivity and 81.8% specificity on all 108 samples, with an area under curve of 86.7%.
CONCLUSIONS: Machine learning analysis of circulating miRNAs offers a minimally invasive alternative for primary aldosteronism lateralization. Early identification of bilateral adrenal hyperplasia could expedite treatment initiation without the need for further localization, benefiting both patients and health care providers.