Displaying publications 161 - 180 of 983 in total

Abstract:
Sort:
  1. Muda K, Aris A, Salim MR, Ibrahim Z, Yahya A, van Loosdrecht MC, et al.
    Water Res, 2010 Aug;44(15):4341-50.
    PMID: 20580402 DOI: 10.1016/j.watres.2010.05.023
    Microbial granular sludge that is capable to treat textile wastewater in a single reactor under intermittent anaerobic and aerobic conditions was developed in this study. The granules were cultivated using mixed sewage and textile mill sludge in combination with anaerobic granules collected from an anaerobic sludge blanket reactor as seed. The granules were developed in a single sequential batch reactor (SBR) system under alternating anaerobic and aerobic condition fed with synthetic textile wastewater. The characteristics of the microbial granular sludge were monitored throughout the study period. During this period, the average size of the granules increased from 0.02 +/- 0.01 mm to 2.3 +/- 1.0 mm and the average settling velocity increased from 9.9 +/- 0.7 m h(-1) to 80 +/- 8 m h(-1). This resulted in an increased biomass concentration (from 2.9 +/- 0.8 g L(-1) to 7.3 +/- 0.9 g L(-1)) and mean cell residence time (from 1.4 days to 8.3 days). The strength of the granules, expressed as the integrity coefficient also improved. The sequential batch reactor system demonstrated good removal of COD and ammonia of 94% and 95%, respectively, at the end of the study. However, only 62% of color removal was observed. The findings of this study show that granular sludge could be developed in a single reactor with an intermittent anaerobic-aerobic reaction phase and is capable in treating the textile wastewater.
    Matched MeSH terms: Microscopy, Electron, Scanning
  2. Caillaud A, de la Iglesia P, Campàs M, Elandaloussi L, Fernández M, Mohammad-Noor N, et al.
    Toxicon, 2010 Feb-Mar;55(2-3):633-7.
    PMID: 19631680 DOI: 10.1016/j.toxicon.2009.07.016
    Protein phosphatase inhibition assay (PPIA), Neuroblastoma cell-based assay (Neuro-2a CBA) and LC-MS/MS analysis revealed for the first time the production of okadaic acid (OA) by a Prorocentrum rhathymum strain. Low amounts of OA were detected by LC-MS/MS analysis. Inhibition of PP2A activity and a weak toxicity to the Neuro-2a CBA were also observed.
    Matched MeSH terms: Microscopy, Electron, Scanning
  3. Kua BC, Noraziah MR, Nik Rahimah AR
    Trop Biomed, 2012 Sep;29(3):443-50.
    PMID: 23018508 MyJurnal
    Twenty Asian sea bass Lates calcarifer from a floating cage in Bt. Tambun, Penang were examined for the presence of parasitic gill copepod, Lernanthropus latis. The prevalence of L. latis was 100% with the intensity of infection ranging from 1 to 18 parasites per host or 3.75 of mean intensity. Female parasites having oblong cephalothorax and egg-strings were seen mainly on the entire gill of examined Asian sea bass. The infected gill of Asian sea bass was pale and had eccessive mucus production. Under light and scanning electron microscopies (SEM), L. latis was seen grasping or holding tightly to the gill filament using their antenna, maxilla and maxilliped. These structures are characteristically prehensile and uncinate for the parasite to attach onto the host tissue. The damage was clearly seen under SEM as the hooked end of the antenna was embedded into the gill filament. The parasite also has the mandible which is styliform with eight teeth on the inner margin. The pathological effects such as erosion, haemorrhages, hyperplasia and necrosis along the secondary lamellae of gill filaments were seen and more severe at the attachment site. The combined actions of the antenna, maxilla and maxilliped together with the mandible resulted in extensive damage as L. latis attached and fed on the host tissues.
    Matched MeSH terms: Microscopy, Electron, Scanning
  4. Thu HE, Ng SF
    Int J Pharm, 2013 Sep 15;454(1):99-106.
    PMID: 23856162 DOI: 10.1016/j.ijpharm.2013.06.082
    In our previous study, a novel alginate-based bilayer film for slow-release wound dressings was successfully developed. We found that alginate alone yielded poor films; however, the addition of gelatine had significantly enhanced the drug dispersion as well as the physical properties. Here, an investigation of the drug-polymer interactions in the bilayer films was carried out. Drug content uniformity test and microscopy observation revealed that the addition of gelatine generated bilayer films with a homogenous drug distribution within the matrix. The FTIR and XRD data showed an increase in film crystallinity which might infer the presence of drug-polymer crystalline microaggregates in the films. DSC confirmed the drug-polymer interaction and indicated that the gelatine has no effect on the thermal behaviour of the microaggregates, suggesting the compatibility of the drug and excipients in the bilayer films. In conclusion, the addition of gelatine can promote homogenous dispersion of hydrophobic drugs in alginate films possibly through the formation of crystalline microaggregates.
    Matched MeSH terms: Microscopy, Electron, Scanning
  5. Afiqah RN, Paital B, Kumar S, Majeed AB, Tripathy M
    J. Mol. Recognit., 2016 11;29(11):544-554.
    PMID: 27406464 DOI: 10.1002/jmr.2554
    The inhibitory role of AgNO3 on glucose-mediated respiration in Escherichia coli has been investigated as a function of pH and temperature using Clark-type electrode, environmental scanning electron microscopy, and computational tools. In the given concentration of bacterial suspension (1 × 10(8)  CFU/ml), E. coli showed an increasing nonlinear trend of tetra-phasic respiration between 1-133 μM glucose concentration within 20 min. The glucose concentrations above 133 μM did not result any linear increment in respiration but rather showed a partial inhibition at higher glucose concentrations (266-1066 μM). In the presence of glucose, AgNO3 caused a concentration-dependent (47-1960 μM) inhibition of the respiration rate within 4 min of its addition. The respiration rate was the highest at pH 7-8 and then was decreased on either side of this pH range. The inhibitory action of AgNO3 upon bacterial respiration was the highest at 37 °C. The observations of the respiration data were well supported by the altered bacterial morphology as observed in electron microscopic study. Docking study indicated the AgNO3 binding to different amino acids of all respiratory complex enzymes in E. coli and thereby explaining its interference with the respiratory chain. Copyright © 2016 John Wiley & Sons, Ltd.
    Matched MeSH terms: Microscopy, Electron, Scanning
  6. Taylor ML, Cooper RL, Schneider EL, Osborn JM
    Am J Bot, 2015 Oct;102(10):1685-702.
    PMID: 26419810 DOI: 10.3732/ajb.1500249
    A knowledge of pollen characters in early-diverging angiosperm lineages is essential for understanding pollen evolution and the role of pollen in angiosperm diversification. In this paper, we report and synthesize data on mature pollen and pollen ontogeny from all genera of Nymphaeales within a comparative, phylogenetic context and consider pollen evolution in this early-diverging angiosperm lineage. We describe mature pollen characters for Euryale, Barclaya, and Nymphaea ondinea, taxa for which little to no structural data exist.
    Matched MeSH terms: Microscopy, Electron, Scanning
  7. Al-Namnam NM, Kutty MG, Chai WL, Ha KO, Kim KH, Siar CH, et al.
    Mater Sci Eng C Mater Biol Appl, 2017 Mar 01;72:332-340.
    PMID: 28024594 DOI: 10.1016/j.msec.2016.11.086
    Recently, a modified form of a three-dimension (3D) porous poly(caprolactone-trifumarate) (PCLTF) scaffold has been produced using a fabrication technique that involves gelatin microparticles porogen leaching. This poly(caprolactone trifumarate-gelatin microparticles) (PCLTF-GMPs) scaffold has been shown to be biocompatible, more flowable clinically, and has a shorter degradation time as compared to its existing predecessors. In this report, a detailed characterization of this new scaffold was performed by testing its cytocompatibility, analyzing the surface topography, and understanding its thermal, physical and mechanical properties. The result showed that the PCLTF-GMPs has no critical cytotoxic effect. To confirm improvement, the surface properties were compared against the older version of PCLTF fabricated using salt porogen leaching. This PCLTF-GMPs scaffold showed no significant difference (unpaired t-test; p>0.05) in mechanical properties before and after gelatin leaching. However, it is mechanically weaker when compared to its predecessors. It has a high biodegradability rate of 16weeks. The pore size produced ranges from 40 to 300μm, and the RMS roughness is 613.7±236.9nm. These characteristics are condusive for osteoblast in-growth, as observed by the extension of filopodia across the macropores. Overall, this newly produced material has good thermal, physical and mechanical properties that complements its biocompatibility and ease of use.
    Matched MeSH terms: Microscopy, Electron, Scanning
  8. Waziri PM, Abdullah R, Yeap SK, Omar AR, Abdul AB, Kassim NK, et al.
    J Ethnopharmacol, 2016 Dec 24;194:549-558.
    PMID: 27729282 DOI: 10.1016/j.jep.2016.10.030
    ETHNOPHARMACOLOGICAL RELEVANCE: Clausena excavata Burm.f. is used locally in folk medicine for the treatment of cancer in South East Asia.

    AIM OF THE STUDY: To determine the mechanism of action of pure clausenidin crystals in the induction of hepatocellular carcinoma (hepG2) cells apoptosis.

    MATERIALS AND METHODS: Pure clausenidin was isolated from Clausena excavata Burm.f. and characterized using (1)H and (13)C NMR spectra. Clausenidin-induced cytotoxicity was determined by MTT assay. The morphology of hepG2 after treatment with clausenidin was determined by fluorescence and Scanning Electron Microscopy. The effect of clausenidin on the apoptotic genes and proteins were determined by real-time qPCR and protein array profiling, respectively. The involvement of the mitochondria in clausenidin-induced apoptosis was investigated using MMP, caspase 3 and 9 assays.

    RESULTS: Clausenidin induced significant (p<0.05) and dose-dependent apoptosis of hepG2 cells. Cell cycle assay showed that clausenidin induced a G2/M phase arrest, caused mitochondrial membrane depolarization and significantly (p<0.05) increased expression of caspases 3 and 9, which suggest the involvement of the mitochondria in the apoptotic signals. In addition, clausenidin caused decreased expression of the anti-apoptotic protein, Bcl 2 and increased expression of the pro-apoptotic protein, Bax. This finding was confirmed by the downregulation of Bcl-2 gene and upregulation of the Bax gene in the treated hepG2 cells.

    CONCLUSION: Clausenidin extracted from Clausena excavata Burm.f. is an anti-hepG2 cell compound as shown by its ability to induce apoptosis through the mitochondrial pathway of apoptosis. Clausenidin can potentially be developed into an anticancer compound.

    Matched MeSH terms: Microscopy, Electron, Scanning
  9. Qi J, Zhang H, Wang Y, Mani MP, Jaganathan SK
    Int J Nanomedicine, 2018;13:2777-2788.
    PMID: 29785105 DOI: 10.2147/IJN.S151242
    Introduction: Currently, the design of extracellular matrix (ECM) with nanoscale properties in bone tissue engineering is challenging. For bone tissue engineering, the ECM must have certain properties such as being nontoxic, highly porous, and should not cause foreign body reactions.

    Materials and methods: In this study, the hybrid scaffold based on polyvinyl alcohol (PVA) blended with metallocene polyethylene (mPE) and plectranthus amboinicus (PA) was fabricated for bone tissue engineering via electrospinning. The fabricated hybrid nanocomposites were characterized by scanning electron microscopy (SEM), Fourier transform and infrared spectroscopy (FTIR), thermogravimetric analysis (TGA), contact angle measurement, and atomic force microscopy (AFM). Furthermore, activated partial thromboplastin time (APTT), prothrombin time (PT), and hemolytic assays were used to investigate the blood compatibility of the prepared hybrid nanocomposites.

    Results: The prepared hybrid nanocomposites showed reduced fiber diameter (238±45 nm) and also increased porosity (87%) with decreased pore diameter (340±86 nm) compared with pure PVA. The interactions between PVA, mPE, and PA were identified by the formation of the additional peaks as revealed in FTIR. Furthermore, the prepared hybrid nanocomposites showed a decreased contact angle of 51°±1.32° indicating a hydrophilic nature and exhibited lower thermal stability compared to pristine PVA. Moreover, the mechanical results revealed that the electrospun scaffold showed an improved tensile strength of 3.55±0.29 MPa compared with the pristine PVA (1.8±0.52 MPa). The prepared hybrid nanocomposites showed delayed blood clotting as noted in APTT and PT assays indicating better blood compatibility. Moreover, the hemolysis assay revealed that the hybrid nanocomposites exhibited a low hemolytic index of 0.6% compared with pure PVA, which was 1.6% suggesting the safety of the developed nanocomposite to red blood cells (RBCs).

    Conclusion: The prepared nanocomposites exhibited better physico-chemical properties, sufficient porosity, mechanical strength, and blood compatibility, which favors it as a valuable candidate in bone tissue engineering for repairing the bone defects.

    Matched MeSH terms: Microscopy, Electron, Scanning
  10. Johari SA, Mohtar M, Syed Mohamad SA, Mohammat MF, Sahdan R, Mohamed A, et al.
    Biomed Res Int, 2017;2017:8032865.
    PMID: 28536702 DOI: 10.1155/2017/8032865
    Previously we have discovered a synthetically derived pyrrolidone alkaloid, MFM501, exhibiting good inhibitory activity against 53 MRSA and MSSA isolates with low cytotoxicity against three normal cell-lines with IC50 values at >625 µg/ml. Time-kill assay, scanning electron microscopy (SEM) analysis, in vivo oral acute toxicity test, and mice peritonitis model were carried out in this study. In the time-kill study, MFM501 showed a less than 3 log10 decrease in bacterial colony concentration value (CFU/ml) which represented a bacteriostatic action while displaying a time-dependent inhibitory mechanism. Following that, SEM analysis suggested that MFM501 may exert its inhibitory activity via cytoplasmic membrane disruption. Moreover, MFM501 showed no toxicity effect on treated mice at an estimated median acute lethal dose (LD50) value of more than 300 mg/kg and less than 2000 mg/kg. For the efficacy test, a mean effective dose (ED50) of 87.16 mg/kg was obtained via a single dose oral administration. Our data demonstrated that MFM501 has the potential to be developed further as a new, safe, and effective oral-delivered antibacterial agent against MRSA isolates.
    Matched MeSH terms: Microscopy, Electron, Scanning
  11. Bakri MM, Hossain MZ, Razak FA, Saqina ZH, Misroni AA, Ab-Murat N, et al.
    Aust Dent J, 2017 Jun;62(2):186-191.
    PMID: 27813093 DOI: 10.1111/adj.12484
    BACKGROUND: Dentine hypersensitivity is a common problem attributed by patent dentinal tubules. Ingredients incorporated in toothpastes aim to occlude patent dentinal tubules to minimize the dentine hypersensitivity. However, frequent consumption of acidic soft drinks may reverse the dentinal tubules' occlusion. In this in vitro study, the efficacy of dentinal tubules occluded by commercially available toothpastes to withstand different durations of an acidic soft drink challenge was investigated.

    METHODS: One hundred and twenty dentine discs were divided into three groups. The discs from each group were brushed with toothpaste containing bioactive glass, arginine and control toothpaste. Each group was then divided into four subgroups and exposed to acidic soft drink over four different time durations.

    RESULTS: The scoring and the percentage of occluded dentinal tubules by Novamin-containing toothpaste was significantly better compared with arginine or the control toothpaste. Acidic soft drink challenge reduced the extent of dentinal tubules occlusion along with time. Dentinal tubules occluded by Novamin-containing toothpaste withstand the acidic challenge comparatively for a longer period.

    CONCLUSIONS: The findings demonstrated that occlusion of dentinal tubules is more efficient by the bioactive glass-containing toothpaste and thus may contribute to its better resistance to acidic soft drink challenge.

    Matched MeSH terms: Microscopy, Electron, Scanning
  12. Quek JA, Lam SM, Sin JC, Mohamed AR
    PMID: 30099271 DOI: 10.1016/j.jphotobiol.2018.07.030
    Flower-like ZnO micro/nanostructures were successfully fabricated via a surfactant-free co-precipitation method. The as-synthesized product was characterized using X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM), energy dispersive X-ray (EDX), transmission electron microscopy (TEM), fourier transform infrared spectroscopy (FTIR), UV-vis diffuse reflectance spectroscopy (UV-vis DRS) and photoluminescence (PL) analyses. In the presence of visible light irradiation, the as-synthesized flower-like ZnO showed higher antibacterial activities against Enterococcus faecalis (E. faecalis) and Micrococcus luteus (M. luteus) than that of commercial ZnO. The excellent antibacterial performance of synthesized flower-like ZnO was also observed via the bacterial morphological change, K+ ions leakage and protein leakage in extracellular suspension. In addition, the FTIR investigation on both treated bacteria further confirmed the bacterial membrane damage via cellular substance alteration. The enhancement of the antibacterial activity of synthesized ZnO can be attributed to the unique flower-like morphology which can increase the surface OH- groups and the quantity of photogenerated electron-hole pair available to participate in the photocatalytic reaction. The reactive oxidizing species (ROS) scavengers experiments showed that H2O2 played a main role in the photocatalytic antibacterial process. Our study showed that the synthesized flower-like ZnO micro/nanostructures can act as efficient antibacterial agents in the photocatalytic antibacterial process under visible light irradiation.
    Matched MeSH terms: Microscopy, Electron, Scanning
  13. Zahed FM, Hatamluyi B, Lorestani F, Es'haghi Z
    J Pharm Biomed Anal, 2018 Nov 30;161:12-19.
    PMID: 30142492 DOI: 10.1016/j.jpba.2018.08.004
    A highly efficient electrochemical sensor for the analysis of anticancer drug 5-fluorouracil (5-FU), is fabricated based on silver nanoparticles-polyaniline nanotube (AgNPs@PANINTs). AgNPs@PANINTs nanocomposite has been synthesized by a simple one-step method. Synthesized AgNPs@PANINTs nanocomposite was studied by Fourier transform infrared spectrometry, Scanning Electron Microscopy and Energy Dispersive X-ray. The fabricated PANINTs@AgNPs PGE was applied to the electrochemical sensing of 5-FU. Cyclic voltammetry and differential pulse voltammetry experiments illustrated high electro activity for the AgNPs@PANINTs nanocomposite. The study was explored using the Taguchi experimental design method. Electrochemical measurements using differential pulse voltammetry showed a wide linear relationship between 5-FU concentration and peak height within the range 1.0-300.0 μM with a low detection limit (0.06 μM). Also, the fabricated sensor showed excellent selectivity in the presence of two anticancer drugs and a number of other interfering compounds. The as-prepared sensor showed to be a promising device for a simple, rapid, and direct analysis of 5-FU.
    Matched MeSH terms: Microscopy, Electron, Scanning
  14. Chen SH, Cheow YL, Ng SL, Ting ASY
    J Hazard Mater, 2019 01 15;362:394-402.
    PMID: 30248661 DOI: 10.1016/j.jhazmat.2018.08.077
    Penicillium simplicissimum (isolate 10), a metal tolerant fungus, tolerated 1000 mg/L Cu and 500 mg/L Zn, but were inhibited by Cd (100 mg/L), evident by the Tolerance Index (TI) of 0.88, 0.83, and 0.08, respectively. Live cells of P. simplicissimum were more effective in removing Cr (88.6%), Pb (73.7%), Cu (63.8%), Cd (33.1%), and Zn (28.3%) than dead cells (5.3-61.7%). Microscopy approach via SEM-EDX and TEM-EDX suggested that metal removal involved biosorption and bioaccumulation, with metal precipitates detected on the cell wall, and in the cytoplasm and vacuoles. FTIR analysis revealed metals interacted with amino, carbonyl, hydroxyl, phosphoryl (except Cd) and nitro groups in the cell wall. Biosorption and bioaccumulation of metals by live cells reduced Cu and Pb toxicity, observed from good root and (4.00-4.28 cm) and shoot (8.07-8.36 cm) growth of Vigna radiata in the phytotoxicity assay.
    Matched MeSH terms: Microscopy, Electron, Scanning
  15. Besser K, Malyon GP, Eborall WS, Paro da Cunha G, Filgueiras JG, Dowle A, et al.
    Nat Commun, 2018 12 03;9(1):5125.
    PMID: 30510200 DOI: 10.1038/s41467-018-07575-2
    Woody (lignocellulosic) plant biomass is an abundant renewable feedstock, rich in polysaccharides that are bound into an insoluble fiber composite with lignin. Marine crustacean woodborers of the genus Limnoria are among the few animals that can survive on a diet of this recalcitrant material without relying on gut resident microbiota. Analysis of fecal pellets revealed that Limnoria targets hexose-containing polysaccharides (mainly cellulose, and also glucomannans), corresponding with the abundance of cellulases in their digestive system, but xylans and lignin are largely unconsumed. We show that the limnoriid respiratory protein, hemocyanin, is abundant in the hindgut where wood is digested, that incubation of wood with hemocyanin markedly enhances its digestibility by cellulases, and that it modifies lignin. We propose that this activity of hemocyanins is instrumental to the ability of Limnoria to feed on wood in the absence of gut symbionts. These findings may hold potential for innovations in lignocellulose biorefining.
    Matched MeSH terms: Microscopy, Electron, Scanning
  16. Kouhi M, Jayarama Reddy V, Ramakrishna S
    Appl Biochem Biotechnol, 2019 Jun;188(2):357-368.
    PMID: 30456599 DOI: 10.1007/s12010-018-2922-0
    Bioceramic nanoparticles with high specific surface area often tend to agglomerate in the polymer matrix, which results in undesirable mechanical properties of the composites and poor cell spreading and attachment. In the present work, bredigite (BR) nanoparticles were modified with an organosilane coupling agent, 3-glycidoxypropyltrimethoxysilane (GPTMS), to enhance its dispersibility in the polymer matrix. The polyhydroxybutyrate-co-hydroxyvaletare (PHBV) nanofibrous scaffolds containing either bredigite or GPTMS-modified bredigite (G-BR) nanoparticles were fabricated using electrospinning technique and characterized using scanning electron microscopy, transmission electron microscopy, and tensile strength. Results demonstrated that modification of bredigite was effective in enhancing nanoparticle dispersion in the PHBV matrix. PHBV/G-BR scaffold showed improved mechanical properties compared to PHBV and PHBV/BR, especially at the higher concentration of nanoparticles. In vitro bioactivity assay performed in the simulated body fluid (SBF) indicated that composite PHBV scaffolds were able to induce the formation of apatite deposits after incubation in SBF. From the results of in vitro biological assay, it is concluded that the synergetic effect of BR and GPTMS provided an enhanced hFob cells attachment and proliferation. The developed PHBV/G-BR nanofibrous scaffolds may be considered for application in bone tissue engineering.
    Matched MeSH terms: Microscopy, Electron, Scanning
  17. Hussain MA, Ahmed D, Anwar A, Perveen S, Ahmed S, Anis I, et al.
    Int Microbiol, 2019 Jun;22(2):239-246.
    PMID: 30810990 DOI: 10.1007/s10123-018-00043-3
    Silver nanoparticles (SN) have been recently developed as a new class of antimicrobial agents against numerous pathogenic microorganisms. SN have also been used as efficient drug delivery systems and have been linked with increasing drug potency. Here, we demonstrated the enhanced antifungal efficacy of nystatin (NYT) and fluconazole (FLU) after conjugation with SN. The antifungal bioactivity of NYT- and FLU-coated SN was evaluated against Candida albicans ATCC 10231 and Aspergillus brasiliensis ATCC 16404 by the agar tube dilution method. The aim of this study was to determine and compare the antifungal efficacy of NYT and FLU with their SN and, finally, the combination of both nanoparticles as NYT-SN + FLU-SN against pathogenic fungi. The results indicated that all test samples showed a dose-dependent response against tested fungi. SN significantly enhanced the antifungal effects of NYT and FLU as compared to drugs alone. We observed a remarkable increase in the percent inhibition of both fungi (90-100%) when treated with a combination of both nanoparticles NYT-SN + FLU-SN at 200 μg/mL only. Furthermore, the morphological modifications occurred at the surface of fungal species were also analyzed by atomic force microscopy (AFM) and scanning electron microscopy (SEM). While tested against primary human cell line, all SN showed negligible cytotoxicity. Hence, these results suggest that the combination of SN with NYT and FLU may have clinical implications in the treatment of fungal infections. However, in vivo studies are needed before recommending the use of these nanoparticles safely in clinical situations.
    Matched MeSH terms: Microscopy, Electron, Scanning
  18. Mohd Amin MC, Ahmad N, Pandey M, Jue Xin C
    Drug Dev Ind Pharm, 2014 Oct;40(10):1340-9.
    PMID: 23875787 DOI: 10.3109/03639045.2013.819882
    This study evaluated the potential of stimuli-responsive bacterial cellulose-g-poly(acrylic acid-co-acrylamide) hydrogels as oral controlled-release drug delivery carriers. Hydrogels were synthesized by graft copolymerization of the monomers onto bacterial cellulose (BC) fibers by using a microwave irradiation technique. The hydrogels were characterized by Fourier transform infrared (FT-IR) spectroscopy, X-ray diffraction (XRD), thermogravimetric analysis (TGA) and scanning electron microscopy (SEM). FT-IR spectroscopy confirmed the grafting. XRD showed that the crystallinity of BC was reduced by grafting, whereas an increase in the thermal stability profile was observed in TGA. SEM showed that the hydrogels exhibited a highly porous morphology, which is suitable for drug loading. The hydrogels demonstrated a pH-responsive swelling behavior, with decreased swelling in acidic media, which increased with increase in pH of the media, reaching maximum swelling at pH 7. The release profile of the hydrogels was investigated in simulated gastric fluid (SGF) and simulated intestinal fluid (SIF). The hydrogels showed lesser release in SGF than in SIF, suggesting that hydrogels may be suitable drug carriers for oral controlled release of drug delivery in the lower gastrointestinal tract.
    Matched MeSH terms: Microscopy, Electron, Scanning
  19. Al-Haddawi MH, Jasni S, Zamri-Saad M, Mutalib AR, Zulkifli I, Son R, et al.
    Vet J, 2000 May;159(3):274-81.
    PMID: 10775473
    In vitro experiments were undertaken to study the adhesion and colonization to tracheal mucosa, lung and aorta explants from freshly killed rabbits of two different strains of Pasteurella multocida. Serotype A:3 (capsulated, fimbriae +, haemagglutination -, dermonecrotic toxin -) isolated from a rabbit with rhinitis, and serotype D:1 (non-capsulated, fimbriae +, haemagglutination +, dermonecrotic toxin +) isolated from a dead rabbit with septicaemia, were used. When the explants were observed under the scanning electron microscope, the type D strain was highly adherent to trachea and aorta explants compared to the type A strain. Adhesion to lung explants was best achieved by the type A strain after 45 min incubation, but after 2 h incubation no significant difference was observed between the strains. Our data indicate that the presence of fimbriae and the absence of capsule seem to enhance the adherence of P. multocida type D strain to tracheal tissue. The capsular material of P. multocida type A strain and the toxin of the type D strain seem to influence the adherence to lung tissue in rabbit. Adhesion of strain D to aorta may indicate the expression of receptors on the endothelium to that strain and may also explain the ability of certain strains to cause septicaemia.
    Matched MeSH terms: Microscopy, Electron, Scanning
  20. Majithia U, Venkataraghavan K, Choudhary P, Trivedi K, Shah S, Virda M
    Indian J Dent Res, 2016 Sep-Oct;27(5):521-527.
    PMID: 27966511 DOI: 10.4103/0970-9290.195642
    INTRODUCTION: In an attempt to manage noncavitated carious lesions noninvasively through remineralization, a range of novel fluoride varnishes with additional remineralizing agents have been made available for clinical application.

    AIM AND OBJECTIVES: The aim of this study was to compare and evaluate the remineralization potential of three commercially available varnishes on artificial enamel lesions.

    MATERIALS AND METHODS: This in vitro study involves eighty intact enamel specimens prepared from premolars extracted for orthodontic purposes. After specimen preparation, the eighty samples were divided randomly into two groups (n = 40) for measurement of baseline surface Vickers microhardness and baseline calcium/phosphorus ratio (% weight) through EDAX testing. Thereafter, the specimens were subjected to demineralization for 96 h to induce initial enamel lesions and the measurements were repeated. Following demineralization, each of the two groups was divided randomly into four subgroups (n = 10) from which one was used as the control group and the others three were allotted to each of the three test varnishes. After varnish application, all the specimens were subjected to a pH cycling regimen that included alternative demineralization (3 h) and remineralization (21 h) daily, for 5 consecutive days. The Vickers microhardness and EDAX measurements were then repeated.

    RESULTS: One-way ANOVA and post hoc Tukey's tests were conducted for multiple group comparison. All the three commercially available varnishes were capable of remineralizing initial enamel lesions that were induced artificially. No difference was noted in the remineralizing efficacy of the varnishes despite their different compositions. MI Varnish™ (casein phosphopeptide-amorphous calcium phosphate fluoride varnish) showed slightly better recovery in surface microhardness as compared to the other two varnishes.

    CONCLUSION: All the varnishes used in this in vitro study are capable of reversing early enamel lesions.
    Matched MeSH terms: Microscopy, Electron, Scanning
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links