METHODS: Data related to awards to UK institutions for pneumonia research from 1997 to 2013 were systematically sourced and categorised by disease area and type of science. Investment was compared to mortality figures in 2010 and 2013 for pneumonia, tuberculosis and influenza. Investment was also compared to publication data.
RESULTS: Of all infectious disease research between 2011 and 2013 (£917.0 million), £28.8 million (3.1%) was for pneumonia. This was an absolute and proportionate increase from previous time periods. Translational pneumonia research (33.3%) received increased funding compared with 1997-2010 where funding was almost entirely preclinical (87.5%, here 30.9%), but high-burden areas such as paediatrics, elderly care and antimicrobial resistance received little investment. Annual investment remains volatile; publication temporal trends show a consistent increase. When comparing investment to global burden with a novel 'investment by mortality observed' metric, tuberculosis (£48.36) and influenza (£484.21) receive relatively more funding than pneumonia (£43.08), despite investment for pneumonia greatly increasing in 2013 compared to 2010 (£7.39). Limitations include a lack of private sector data and the need for careful interpretation of the comparisons with burden, plus categorisation is subjective.
CONCLUSIONS: There has been a welcome increase for pneumonia funding awarded to UK institutions in 2011-2013 compared with 1997-2010, along with increases for more translational research. Published outputs relating to pneumonia rose steadily from 1997 to 2013. Investment relative to mortality for pneumonia has increased, but it remains low compared to other respiratory infections and clear inequities remain. Analyses that measure investments in pneumonia can provide an insight into funding trends and research gaps.
RESEARCH IN CONTEXT: Pneumonia continues to be a high-burden illness around the globe. This paper shows that although research funding is increasing in the UK (between 1997 and 2013), it remains poorly funded compared to other important respiratory infectious diseases such as tuberculosis and influenza. Publications about pneumonia have been steadily increasing over time, indicating continuing academic and clinical interest in the topic. Though global mortality of pneumonia is declining, it should still be an area of high priority for funders, policymakers and researchers.
OUTBREAK SITUATION: A stringent screening process at all airports in Malaysia was enforced after the first case outside China was reported in Thailand. Up to April 14, 2020, Malaysia had reported two waves of COVID-19 cases, with the first wave ending successfully within less than 2 months. In early March 2020, the second wave occurred, with worrying situations.
ACTIONS TAKEN: The Government of Malaysia enforced a Movement Control Order starting on March 18, 2020 to break the chain of COVID-19. The media actively spread the hashtag #stayhome. Non-governmental organizations, as well as prison inmates, started to produce personal protective equipment for frontliners. Various organizations hosted fundraising events to provide essentials mainly to hospitals. A provisional hospital was set up and collaborations with healthcare service providers were granted, while additional laboratories were assigned to enhance the capabilities of the Ministry of Health.
ECONOMIC DOWNTURN: An initial financial stimulus amounting to RM 20.0 billion was released in February 2020, before the highlighted PRIHATIN Package, amounting to RM 250 billion, was announced. The PRIHATIN Package has provided governmental support to society, covering people of various backgrounds from students and families to business owners.
METHODOLOGY: This study was conducted using daily confirmed cases of COVID-19 collected from the official Ministry of Health, Malaysia (MOH) and John Hopkins University websites. An Autoregressive Integrated Moving Average (ARIMA) model was fitted to the training data of observed cases from 22 January to 31 March 2020, and subsequently validated using data on cases from 1 April to 17 April 2020. The ARIMA model satisfactorily forecasted the daily confirmed COVID-19 cases from 18 April 2020 to 1 May 2020 (the testing phase).
RESULTS: The ARIMA (0,1,0) model produced the best fit to the observed data with a Mean Absolute Percentage Error (MAPE) value of 16.01 and a Bayes Information Criteria (BIC) value of 4.170. The forecasted values showed a downward trend of COVID-19 cases until 1 May 2020. Observed cases during the forecast period were accurately predicted and were placed within the prediction intervals generated by the fitted model.
CONCLUSIONS: This study finds that ARIMA models with optimally selected covariates are useful tools for monitoring and predicting trends of COVID-19 cases in Malaysia.
OBJECTIVE: Our aim was to create and describe a homemade, high-fidelity ultrasound phantom model for demonstrating pneumonia with pleural effusions for teaching purposes.
DISCUSSION: An ultrasound phantom was constructed using a water-filled latex glove with a sliver of meat in it, covered over by a palm-sized piece of meat (skin and ribs are optional to increase ultrasonographic details and realism). This would appear like parapneumonic effusions with organized pneumonia under ultrasound examination. Creamer (or talc) can be added to the water in the glove to simulate empyema. The model can also be used to teach simple effusions and for ultrasound-guided thoracentesis and in clinical decision making.
CONCLUSIONS: Easily prepared, homemade high-fidelity ultrasound phantom models for instructions on identification of pleural effusions and ultrasound-guided pleural tap of parapneumonic effusion were made.