Displaying publications 161 - 180 of 272 in total

Abstract:
Sort:
  1. Chin SP, Mohd-Shahrizal MY, Liyana MZ, Then KY, Cheong SK
    Stem Cells Int, 2020;2020:8877003.
    PMID: 33061992 DOI: 10.1155/2020/8877003
    Background: Mesenchymal stem cells (MSCs) express growth factors and other cytokines that stimulate repair and control the immune response. MSCs are also immunoprivileged with low risk of rejection. Umbilical cord-derived MSCs (UCMSCs) are particularly attractive as an off-the-shelf allogeneic treatment in emergency medical conditions. We aim to determine the safety and efficacy of intravenous allogeneic infusion of UCMSCs (CLV-100) by Cytopeutics® (Selangor, Malaysia) in healthy volunteers, and to determine the effective dose at which an immunomodulatory effect is observed. Methodology. Umbilical cord samples were collected after delivery of full-term, healthy babies with written consent from both parents. All 3 generations (newborn, parents, and grandparents) were screened for genetic mutations, infections, cancers, and other inherited diseases. Samples were transferred to a certified Good Manufacturing Practice laboratory for processing. Subjects were infused with either low dose (LD, 65 million cells) or high dose (HD, 130 million cells) of CLV-100 and followed up for 6 months. We measured cytokines using ELISA including anti-inflammatory cytokines interleukin 1 receptor antagonist (IL-1RA), interleukin 10 (IL-10), pro-/anti-inflammatory cytokine interleukin 6 (IL-6), and the proinflammatory cytokine tumor necrosis factor-alpha (TNF-α).

    Results: 11 healthy subjects (LD, n = 5; HD, n = 6; mean age of 55 ± 13 years) were recruited. All subjects tolerated the CLV-100 infusion well with no adverse reaction throughout the study especially in vital parameters and routine blood tests. At 6 months, the HD group had significantly higher levels of anti-inflammatory markers IL1-RA (705 ± 160 vs. 306 ± 36 pg/mL; p = 0.02) and IL-10 (321 ± 27 vs. 251 ± 28 pg/mL; p = 0.02); and lower levels of proinflammatory marker TNF-α (74 ± 23 vs. 115 ± 15 pg/mL; p = 0.04) compared to LD group.

    Conclusion: Allogeneic UCMSCs CLV-100 infusion is safe and well-tolerated in low and high doses. Anti-inflammatory effect is observed with a high-dose infusion.

    Matched MeSH terms: Tumor Necrosis Factor-alpha
  2. Abd Rashid N, Hussan F, Hamid A, Adib Ridzuan NR, Halim SASA, Abdul Jalil NA, et al.
    EXCLI J, 2020;19:1246-1265.
    PMID: 33122975 DOI: 10.17179/excli2020-2355
    Oxidative stress, inflammation and apoptosis are thought as primary mediators of cisplatin-induced hepatotoxicity. The objective of this study was to determine the protective effect of Polygonum minus essential oil in cisplatin-induced hepatotoxicity. A total of forty-two male rats were randomly divided into seven groups: control, cisplatin, β-caryophyllene 150 mg/kg (BCP), PmEO 100 mg/kg + cisplatin (PmEO100CP), PmEO 200 mg/kg + cisplatin (PmEO200CP), PmEO 400 mg/kg + cisplatin (PmEO400CP) and PmEO 400 mg/kg (PmEO400). Rats in the BCP, PmEO100CP, PmEO200CP, PmEO400CP and PmEO400 group received respective treatment orally for 14 consecutive days prior to cisplatin injection. All animals except for those in the control group and PmEO400 were administered with a single dose of cisplatin (10 mg/kg) intraperitoneally on day 15 and all animals were sacrificed on day 18. PmEO100CP pretreatment protected against cisplatin-induced hepatotoxicity by decreasing CYP2E1 and indicators of oxidative stress including malondialdehyde, 8-OHdG and protein carbonyl which was accompanied by increased antioxidant status (glutathione, glutathione peroxidase, superoxide dismutase and catalase) as compared to cisplatin group. PmEO100CP pretreatment also modulated changes in liver inflammatory markers (TNF-α, IL-1α, IL-1β, IL-6 and IL-10). PmEO100CP administration also notably reduced cisplatin-induced apoptosis significantly as compared to cisplatin group. In conclusion, our results suggested that P. minus essential oil at a dose of 100 mg/kg may protect against cisplatin-induced hepatotoxicity possibly via inhibition of oxidative stress, inflammation and apoptosis.
    Matched MeSH terms: Tumor Necrosis Factor-alpha
  3. Kundap UP, Paudel YN, Kumari Y, Othman I, Shaikh MF
    Front Pharmacol, 2019;10:315.
    PMID: 31057394 DOI: 10.3389/fphar.2019.00315
    Epilepsy is a neuronal disorder associated with several neurological and behavioral alterations characterized by recurrent spontaneous epileptic seizures. Despite having more than 20 anti-epileptic drugs (AEDs), they only provide a symptomatic treatment. As well as, currently available AEDs also displayed cognitive alterations in addition to retarding seizure. This leads to the need for exploring new molecules that not only retard seizure but also improve cognitive impairment. Embelin (EMB) is a benzoquinone derivative which has already demonstrated its pharmacological potentials against arrays of neurological conditions. The current study developed a chronic kindling model in adult zebrafish by using repeated administration of small doses of pentylenetetrazole (PTZ) and a single dose of Kainic acid (KA) to investigate the associated memory impairment. This has been done by using the three-axis maze which is a conventional method to test the learning ability and egocentric memory in zebrafish. As well as, the ameliorative potential of EMB has been evaluated against chronic epilepsy-related memory alterations. Moreover the expression level of pro-inflammatory genes such as C-C motif ligand 2 (CCL2), toll-like receptor-4 (TLR4), tumor necrosis factor-α (TNF-α), interleukin-1 (IL-1) and interferon-γ (IFN-γ) were evaluated. The level of several neurotransmitters such as γ-aminobutyric acid (GABA), acetylcholine (Ach) and glutamate (Glu) was evaluated by liquid chromatography-mass spectrometry (LC-MS). The results showed that daily dose of PTZ 80 mg/kg for 10 days successfully induces a kindling effect in zebrafish, whereas the single dose of KA did not. As compared to control, the PTZ and KA group demonstrates impairment in memory as demonstrated by the three-axis maze. The PTZ group treated with a series of EMB doses (ranging from 0.156 to 0.625 mg/kg) was found to have retarded seizure as well as significantly reduces epilepsy-induced memory alteration. In addition, EMB treatment reduces the expression of inflammatory markers implicating its anti-inflammatory potential. Moreover, levels of GABA, Ach, and glutamate are increased in EMB administered group as compared to the PTZ administered group. Overall, findings demonstrate that EMB might be a potential candidate against chronic epilepsy-related cognitive dysfunction as EMB prevents the seizures, so we expect it to prevent the associated neuroinflammation and learning deficit.
    Matched MeSH terms: Tumor Necrosis Factor-alpha
  4. Lau YS, Zhao L, Zhang C, Li H, Han R
    Life Sci, 2020 Jul 10.
    PMID: 32659370 DOI: 10.1016/j.lfs.2020.118069
    AIM: Up-regulation of inflammasome proteins was reported in dystrophin-deficient muscles. However, it remains to be determined whether inflammasome activation plays a role in the pathogenesis of Duchenne muscular dystrophy. This study was therefore set out to investigate whether genetic disruption of the inflammasome pathway impacts the disease progression in mdx mice.

    MAIN METHODS: Mice deficient in both dystrophin and ASC (encoded by Pycard [PYD And CARD Domain Containing]) were generated. The impact of ASC deficiency on muscular dystrophy of mdx mice were assessed by measurements of serum cytokines, Western blot, real-time PCR and histopathological staining.

    KEY FINDINGS: The pro-inflammatory cytokines such as TNF-α, IL-6, KC/GRO and IL-10 were markedly increased in the sera of 8-week-old mdx mice compared to WT. Western blotting showed that P2X7, caspase-1, ASC and IL-18 were upregulated. Disruption of ASC and dystrophin expression in the mdx/ASC-/- mice was verified by Western blot analysis. Histopathological analysis did not find significant alterations in the muscular dystrophy phenotype in mdx/ASC-/- mice as compared to mdx mice.

    SIGNIFICANCE: Taken together, our results show that disruption of the central adaptor ASC of the inflammasome is insufficient to alleviate muscular dystrophy phenotype in mdx mice.

    Matched MeSH terms: Tumor Necrosis Factor-alpha
  5. Ahmad W, Jantan I, Kumolosasi E, Haque MA, Bukhari SNA
    Int Immunopharmacol, 2018 Jul;60:141-151.
    PMID: 29730557 DOI: 10.1016/j.intimp.2018.04.046
    The in vivo immunomodulatory activities of Tinospora crispa have been reported but its molecular mechanisms underlying its immunomodulatory properties remains obscure and the active constituents contributing to the activities have not been identified. The present study was aimed to investigate the immunomodulatory effects of T. crispa extract (TCE) and its chemical constituents on RAW 264.7 macrophages. Six known compounds including magnoflorine and syringin were isolated by various chromatographic techniques from TCE and their structures were determined spectroscopically. A validated HPLC method was used to quantify magnoflorine and syringin in the extract. The immunomodulatory effects of TCE and its isolated compounds on chemotaxis, phagocytosis, production of inflammatory mediators including reactive oxygen species (ROS), nitric oxide (NO), prostaglandin E2 (PGE2) and pro-inflammatory cytokines which include tumor necrosis factor-α (TNF-α), interleukin (IL)-1β, IL-6 and monocyte chemoattractant protein-1 (MCP-1) on macrophages were assessed. TCE increased the chemotaxis and phagocytic activity of macrophages and significantly enhanced the production of ROS, NO and pro-inflammatory cytokines. All alkaloids isolated, specifically magnoflorine showed remarkable inducing effects on the chemotaxis, phagocytic activity, ROS and NO productions and the secretions of IL-1β, TNF-α, IL6, PGE2 and MCP-1. In contrast, syringin potently reduced the chemotaxis, phagocytic activity, ROS and NO productions and secretions of IL-1β, TNF-α, IL6, PGE2 and MCP-1. TCE showed strong immunostimulant effects on various components of the immune system and these activities were possibly contributed mainly by the alkaloids specifically magnoflorine. TCE has potential to be developed as an effective natural immunostimulant for improvement of immune-related disorders.
    Matched MeSH terms: Tumor Necrosis Factor-alpha
  6. Alkadi KAA, Ashraf K, Adam A, Shah SAA, Taha M, Hasan MH, et al.
    J Pharm Bioallied Sci, 2020 12 21;13(1):116-122.
    PMID: 34084057 DOI: 10.4103/jpbs.JPBS_279_19
    Objectives: The aim of the present study was to isolate and evaluate cytotoxicity and anti-inflammatory activities of new novel compounds isolated from Prismatomeris glabra.

    Materials and Methods: Dried root of P. glabra was extracted under reflux with methyl alcohol, fractionated through the vacuum liquid chromatography technique, and evaporated and then purified the compounds using column chromatography and preparative thin-layer chromatography. THP-1 cells were treated with amentoflavone, 5,7,4'-hydroxyflavonoid, and stigmasterol with various concentrations (0-30 µg/mL) and then incubated with MTS reagent for 2h. Treatment was done for 24, 48, and 72h. Then, effects of these compounds were also tested on PGE2, TNF-α, and IL-6 expression in human THP-1-derived macrophage cells for 24h.

    Results: Three new compounds such as amentoflavone, 5,7,4'-hydroxyflavonoid, and stigmasterol were isolated. After 24h of incubation, a significant decrease in cell viability was reported with IC50 values of amentoflavone, 5,7,4'- hydroxyflavonoid, and stigmasterol (21 µg/mL ≡ 38 M), (18 µg/mL ≡ 66 M) and (20 µg/mL ≡ 48.5 M), respectively. Whereas for 48 and 72h treatment showed a less decreased cell viability compared with 24h treatment. These compounds also showed a significant reduction in the production of TNF-α, IL-6, and PGE2 in a dose-dependent manner.

    Conclusions: The isolated new compounds showed significant cytotoxicity and anti-inflammatory effects.

    Matched MeSH terms: Tumor Necrosis Factor-alpha
  7. Mansooreh, Sadat Mojani, Asmah Rahmat, Rajesh, Ramasamy, Vahid, Hosseinpour Sarmadi, Pratheep, Sandrasaigaran, Shalini, Vellasamy, et al.
    Malays J Nutr, 2016;22(3):421-432.
    MyJurnal
    Introduction: This study was conducted to determine immunological and metabolic effects of different concentrations of ginger rhizome (Zingiber officinale Roscoe) in streptozotocin (STZ)-nicotinamide (NA) induced diabetic rats.

    Methods: Forty-eight fasted male Sprague-Dawley rats were induced diabetes using a single intraperitoneal injection of NA(110 mg/kg b.w.) and STZ (65 mg/kg b.w, 15 min after NA). Diabetic rats orally received either different concentrations (250, 500 and 750 mg/kg body weight) of ginger rhizome suspension or glibenclamide (10 mg/kg body weight) for 6 weeks. Two control diabetic and normal groups were gavaged with only distilled water as a vehicle.

    Results: The results indicated that the lower concentrations of ginger modulated body weight, fasting blood glucose, level of triglyceride and tumor necrosis factor-a (TNF-a) (p
    Matched MeSH terms: Tumor Necrosis Factor-alpha
  8. Zakaria NN, Malahubban M, Fakurazi S, And WSC, Rajaee AH
    Trop Life Sci Res, 2021 Mar;32(1):145-162.
    PMID: 33936556 DOI: 10.21315/tlsr2021.32.1.9
    Mud lobsters are crustaceans from the genus Thalassina which are lesser known and seldom seen but are nevertheless an important organism to the mangrove ecosystem. In Malaysia and Thailand, mud lobsters are eaten by locals as treatment for asthma. It is traditionally believed that they are effective in reducing the number of asthma attacks and severity of asthma symptoms. However, the therapeutic potential of mud lobster extract remains unclear and has not been fully elucidated or reported in any scientific study. The objectives of this study are to investigate the anti-inflammatory potential of mud lobster, Thalassina anomala extracts (hexane, chloroform and methanol) in lipopolysaccharide (LPS)-stimulated RAW 264.7 macrophages, and to identify the potential bioactive compounds involved. An MTT assay was performed to determine the cytotoxicity of the T. anomala extracts on RAW 264.7 macrophages. Nitrite quantification assay and enzyme-linked immunosorbent assay (ELISA) were conducted to investigate the ability of the T. anomala extracts to suppress the secretion and expression of nitric oxide (NO), Prostaglandin E2 (PGE2) and proinflammatory cytokines (TNF-α, IL-6 and IL-1β) in LPS-stimulated macrophages. GC-MS analysis was done to identify putative metabolites. The hexane extract of T. anomala showed anti-inflammatory activity by significantly inhibiting the LPS-induced production of NO, PGE2, interleukin- (IL-) 6, IL-1β and tumour necrosis factor-alpha (TNF-α) in a concentration-dependent manner. Hexane extract treatment with 100 μg/mL has decreased the NO secretion into 37 μM. Meanwhile, hexane extract at concentration of 100 μg/mL able to significantly suppressed PGE2,TNF-α, IL-6 and IL-1β production into 2015 pg/mL, 2406 pg/mL, 460 pg/mL and 9.6 pg/mL, respectively. GC-MS analysis of the hexane extract revealed the presence of 19 putative compounds. The identified compounds were reported to have anti-inflammatory, antioxidant and antibacterial activities. These results suggest that the hexane extract of T. anomala potentially has anti-inflammatory properties and concentration dependently suppressed NO, PGE2 and proinflammatory cytokines' production in LPS-stimulated macrophages. The findings provide a rational basis of the traditional use of mud lobster for inflammation-associated ailments.
    Matched MeSH terms: Tumor Necrosis Factor-alpha
  9. Nunez PRM, Honorio-França AC, Geiger SM, Guedes M, Fagundes DLG, Magalhães AM, et al.
    Trop Biomed, 2020 Sep 01;37(3):763-777.
    PMID: 33612789 DOI: 10.47665/tb.37.3.763
    The aim of this study was to evaluate the prevalence of enteroparasitic infections in students and their hormonal and immunological repercussions on physical development. Students of basic education of both sexes were evaluated. Parasitological stool tests were performed using the Hoffman and Kato-Katz methods. The students were divided into two groups: a control group (negative parasitological examination, N=25) and an infected group (positive parasitological test, N=25). Anthropometric variables (height, weight, and BMI), concentrations of hormones (melatonin and cortisol), cytokine/chemokine levels (IL-1β, IL-6, IL-8, IL-10, IL-12, IL-17 and TNF-α) and physical performance (aerobic capacity, upper- and lower-limb muscle strength and abdominal performance) were evaluated. The prevalence of parasitic infection among the students was 7.98%. No anthropometric differences were observed among the groups. IL-2 and TNF-α levels were higher and IL-8 levels were lower in serum from students who were positive for parasitic infection. Serum from students who were positive for parasitic infection showed higher levels of melatonin than that from parasitenegative students. No differences were observed in cortisol levels. Students who were positive for parasitic infection presented greater lower-limb strength and lower abdominal performance than parasite-negative students. In the parasitic infection group, IL-12 was positively correlated with melatonin. In the parasitic infection group, IL-8 showed a positive correlation with aerobic capacity, while IL-17 and TNF-α showed a positive correlation with abdominal performance. These data suggest that parasitic infections determine the profile of inflammatory cytokines and that melatonin may be involved in the control of this process to minimize tissue damage. Additionally, students' difficulty in practising physical exercises can be an indication of enteroparasitic infection.
    Matched MeSH terms: Tumor Necrosis Factor-alpha
  10. El Saftawy EA, Shash RY, Aboulhoda BE, Arsanyos SF, Albadawi EA, Abou-Fandoud SM, et al.
    Trop Biomed, 2021 Jun 01;38(2):53-62.
    PMID: 33973573 DOI: 10.47665/tb.38.2.037
    BACKGROUND: toxoplasmosis is a cosmopolitan protozoan disease with a wide range of neuropathology. Recent studies identified its potential association with several mental disorders e.g. schizophrenia dependable on apoptosis in their pathogenesis. We investigated value of toxoplasmosis to induce apoptosis of the neuronal cells.

    METHODS: per-orally infected C57BL/6 mice with 15-20 cysts of the avirulent T. gondii Beverly strain at 9-11 weeks of age were examined 12 weeks later during parasite establishment. Distributions of the parasite's cysts and the histopathological lesions in the brains were analyzed using Image J software. Relative expression of TNF-α and iNOS of cell-mediated immunity (CMI), Bax (pro-apoptosis) and Bcl-2 (anti-apoptosis) were all assessed using immunohistochemistry.

    RESULTS: higher parasite burden was seen in the forebrain with p value <= 0.05. Dramatically increased TNF-α, iNOS, and Bax expressions with Bax/Bcl-2 ratio 2.42:0.52 were reported (p value <= 0.05). The significant correlation between Bax data and different CMI biomarkers including TNF-α and i-NOS was evaluated. Interestingly, no significant correlation was seen between TNF-α, iNOS, Bax and Bcl-2 expressions and location of the parasite. However, Bax/Bcl-2 ratio was statistically correlated with CMI biomarkers and whole sample mean parasite burden, p value <= 0.05.

    CONCLUSION: Chronic toxoplasmosis exhibits an immense pro-apoptotic signal on the cerebral tissues of experimental mice.

    Matched MeSH terms: Tumor Necrosis Factor-alpha
  11. Karthivashan G, Kura AU, Arulselvan P, Md Isa N, Fakurazi S
    PeerJ, 2016;4:e2127.
    PMID: 27441110 DOI: 10.7717/peerj.2127
    N-Acetyl-p-Aminophenol (APAP), also known as acetaminophen, is the most commonly used over-the counter analgesic and antipyretic medication. However, its overdose leads to both liver and kidney damage. APAP-induced toxicity is considered as one of the primary causes of acute liver failure; numerous scientific reports have focused majorly on APAP hepatotoxicity. Alternatively, not many works approach APAP nephrotoxicity focusing on both its mechanisms of action and therapeutic exploration. Moringa oleifera (MO) is pervasive in nature, is reported to possess a surplus amount of nutrients, and is enriched with several bioactive candidates including trace elements that act as curatives for various clinical conditions. In this study, we evaluated the nephro-protective potential of MO leaf extract against APAP nephrotoxicity in male Balb/c mice. A single-dose acute oral toxicity design was implemented in this study. Group 2, 3, 4 and 5 received a toxic dose of APAP (400 mg/kg of bw, i.p) and after an hour, these groups were administered with saline (10 mL/kg), silymarin-positive control (100 mg/kg of bw, i.p), MO leaf extract (100 mg/kg of bw, i.p), and MO leaf extract (200 mg/kg bw, i.p) respectively. Group 1 was administered saline (10 mL/kg) during both the sessions. APAP-treated mice exhibited a significant elevation of serum creatinine, blood urea nitrogen, sodium, potassium and chloride levels. A remarkable depletion of antioxidant enzymes such as SOD, CAT and GSH-Px with elevated MDA levels has been observed in APAP treated kidney tissues. They also exhibited a significant rise in pro-inflammatory cytokines (TNF-α, IL-1β, IL-6) and decreased anti-inflammatory (IL-10) cytokine level in the kidney tissues. Disorganized glomerulus and dilated tubules with inflammatory cell infiltration were clearly observed in the histology of APAP treated mice kidneys. All these pathological changes were reversed in a dose-dependent manner after MO leaf extract treatment. Therefore, MO leaf extract has demonstrated some therapeutic effectiveness against APAP-induced nephrotoxicity through enhancement of the endogenous antioxidant system and a modulatory effect on specific inflammatory cytokines in kidney tissues.
    Matched MeSH terms: Tumor Necrosis Factor-alpha
  12. Mohd Iskandar BJ, William T, Daisy Vanitha J
    Med J Malaysia, 2018 04;73(2):106-109.
    PMID: 29703874 MyJurnal
    BACKGROUND: Leptospirosis is a zoonotic disease with symptoms ranging from a mild, febrile illness to a severe form with multiorgan failure. Severe leptospirosis may require medical interventions in the form of dialysis and/or mechanical ventilation and often leads to mortality. An exaggerated host immune response-in particular, a "cytokine storm"-that causes endothelial and organ damage is associated with the disease severity and mortality.

    METHODS: Microscopic agglutination test (MAT)-positive and MAT-negative human serum samples (n=30) from patients with leptospirosis were obtained from the Public Health Laboratory, Kota Kinabalu, Sabah, Malaysia and control serum samples (n=10) were obtained from healthy student volunteers. We estimated the levels of IL-1β, IL-6, IL-8, IL-10, and TNF-α in serum samples by a Luminex assay.

    RESULTS: The levels of IL-6, IL-8, and IL1-β were significantly higher in 13% of the patients with leptospirosis compared to the healthy controls, while the levels of IL-10 and TNF-α were not elevated in either group.

    CONCLUSION: Our data suggest that elevated levels of IL-6, IL- 8, and IL1-β may be associated with leptospirosis disease severity, which requires patient follow-up for confirmation.

    Matched MeSH terms: Tumor Necrosis Factor-alpha
  13. Santhanam RK, Fakurazi S, Ahmad S, Abas F, Ismail IS, Rukayadi Y, et al.
    Phytother Res, 2018 Aug;32(8):1608-1616.
    PMID: 29672974 DOI: 10.1002/ptr.6092
    The antiphoto aging property of Zanthoxylum rhetsa obtained from Pangkor Island, Malaysia, was evaluated. Solvent fractions of different polarity obtained from the methanolic extract of the bark material were initially tested for anticollagenase and antielastase activities. The ethyl acetate fraction showed bioactivity against the protease enzymes. Hence, it was subjected to further purification via column chromatography, to yield a major constituent, hesperidin. Subsequently, the ethyl acetate fraction and hesperidin were tested for their effects against UVB-induced cytotoxicity and expressions of inflammatory cytokines (IL-6, IL-1β, and TNF-α), NF-κB, and MMPs (MMP1, 3, and 9) in human dermal fibroblasts (HDF). Both fraction and pure compound prevented UVB-induced cytotoxicity in HDF cells, in a dose dependent manner. Moreover, the ethyl acetate fraction inhibited the increase of pro-inflammatory cytokines induced by UVB to a level similar to the control (without UV treatment). Additionally, the fraction significantly inhibited the expressions of NF-κB, MMP 1, MMP 3, and MMP 9 in HDF cells treated with UVB. Similar effects were observed with hesperidin. The results obtained suggested that the ethyl acetate fraction of Z. rhetsa and its bioactive constituent, hesperidin, have the potential to be used as active ingredients in sunscreen and antiphoto aging formulations.
    Matched MeSH terms: Tumor Necrosis Factor-alpha
  14. Chan CK, Tan LT, Andy SN, Kamarudin MNA, Goh BH, Kadir HA
    Front Pharmacol, 2017;8:397.
    PMID: 28680404 DOI: 10.3389/fphar.2017.00397
    Elephantopus scaber L. (family: Asteraceae) has been traditionally utilized as a folkloric medicine and scientifically shown to exhibit anti-inflammatory activities in various in vivo inflammatory models. Given the lack of study on the effect of E. scaber in neuroinflammation, this study aimed to investigate the anti-neuroinflammatory effect and the underlying mechanisms of ethyl acetate fraction from the leaves of E. scaber (ESEAF) on the release of pro-inflammatory mediators in lipopolysaccharide (LPS)-induced microglia cells (BV-2). Present findings showed that ESEAF markedly attenuated the translocation of NF-κB to nucleus concomitantly with the significant mitigation on the LPS-induced production of NO, iNOS, COX-2, PGE2, IL-1β, and TNF-α. These inflammatory responses were reduced via the inhibition of p38. Besides, ESEAF was shown to possess antioxidant activities evident by the DPPH and SOD scavenging activities. The intracellular catalase enzyme activity was enhanced by ESEAF in the LPS-stimulated BV-2 cells. Furthermore, the formation of ROS induced by LPS in BV-2 cells was reduced upon the exposure to ESEAF. Intriguingly, the reduction of ROS was found in concerted with the activation of Nrf2 and HO-1. It is conceivable that the activation promotes the scavenging power of antioxidant enzymes as well as to ameliorate the inflammatory response in LPS-stimulated BV-2 cells. Finally, the safety profile analysis through oral administration of ESEAF at 2000 mg/kg did not result in any mortalities, adverse effects nor histopathologic abnormalities of organs in mice. Taken altogether, the cumulative findings suggested that ESEAF holds the potential to develop as nutraceutical for the intervention of neuroinflammatory disorders.
    Matched MeSH terms: Tumor Necrosis Factor-alpha
  15. Ng AWR, Tan PJ, Hoo WPY, Liew DS, Teo MYM, Siak PY, et al.
    PeerJ, 2018;6:e5056.
    PMID: 30042874 DOI: 10.7717/peerj.5056
    Background: Somatic point substitution mutations in the KRAS proto-oncogene primarily affect codons 12/13 where glycine is converted into other amino acids, and are highly prevalent in pancreatic, colorectal, and non-small cell lung cancers. These cohorts are non-responsive to anti-EGFR treatments, and are left with non-specific chemotherapy regimens as their sole treatment options. In the past, the development of peptide vaccines for cancer treatment was reported to have poor AT properties when inducing immune responses. Utilization of bioinformatics tools have since become an interesting approach in improving the design of peptide vaccines based on T- and B-cell epitope predictions.

    Methods: In this study, the region spanning exon 2 from the 4th to 18th codon within the peptide sequence of wtKRAS was chosen for sequence manipulation. Mutated G12V and G13D K-ras controls were generated in silico, along with additional single amino acid substitutions flanking the original codon 12/13 mutations. IEDB was used for assessing human and mouse MHC class I/II epitope predictions, as well as linear B-cell epitopes predictions, while RNA secondary structure prediction was performed via CENTROIDFOLD. A scoring and ranking system was established in order to shortlist top mimotopes whereby normalized and reducing weighted scores were assigned to peptide sequences based on seven immunological parameters. Among the top 20 ranked peptide sequences, peptides of three mimotopes were synthesized and subjected to in vitro and in vivo immunoassays. Mice PBMCs were treated in vitro and subjected to cytokine assessment using CBA assay. Thereafter, mice were immunized and sera were subjected to IgG-based ELISA.

    Results: In silico immunogenicity prediction using IEDB tools shortlisted one G12V mimotope (68-V) and two G13D mimotopes (164-D, 224-D) from a total of 1,680 candidates. Shortlisted mimotopes were predicted to promote high MHC-II and -I affinities with optimized B-cell epitopes. CBA assay indicated that: 224-D induced secretions of IL-4, IL-5, IL-10, IL-12p70, and IL-21; 164-D triggered IL-10 and TNF-α; while 68-V showed no immunological responses. Specific-IgG sera titers against mutated K-ras antigens from 164-D immunized Balb/c mice were also elevated post first and second boosters compared to wild-type and G12/G13 controls.

    Discussion: In silico-guided predictions of mutated K-ras T- and B-cell epitopes were successful in identifying two immunogens with high predictive scores, Th-bias cytokine induction and IgG-specific stimulation. Developments of such immunogens are potentially useful for future immunotherapeutic and diagnostic applications against KRAS(+) malignancies, monoclonal antibody production, and various other research and development initiatives.

    Matched MeSH terms: Tumor Necrosis Factor-alpha
  16. Muthaian R, Pakirisamy RM, Parasuraman S, Raveendran R
    J Pharmacol Pharmacother, 2017 2 7;7(4):159-164.
    PMID: 28163536 DOI: 10.4103/0976-500X.195898
    OBJECTIVE: To investigate the association of hypertension coexisting with diabetes mellitus with oxidative stress and inflammation in the kidneys of streptozotocin (STZ)-induced diabetic rats.

    MATERIALS AND METHODS: Male Wistar rats were used for the experiments. Blood glucose (BG), urea, blood pressure (BP), and heart rate (HR) were analyzed before and 48 h after STZ injection. Further, these parameters were monitored up to 3 months of diabetes induction. Subsequently, the inflammatory markers (C-reactive protein, tumor necrosis factor-alpha, and nitrate) and oxidative stress markers were estimated after 3 months of diabetes induction in the kidney homogenate. Histological analysis of renal tissue was also carried out.

    RESULTS: Linear elevation of BG, urea, mean arterial pressure (MAP), and HR was observed up to 3 months of diabetes induction. In the same manner, inflammatory and oxidative stress markers were also found to be significantly increased. Notably, the histological analysis revealed the signs of nephropathy such as increased mesangial cell number, thickness of basement membrane, and renal artery. Inflammatory and oxidative stress markers positively correlated with elevated BP and BG, but the correlation was better with BP rather than BG.

    CONCLUSION: Hypertension has a strong implication in the increased oxidative stress and inflammation of diabetic kidney at the very early stage of diabetes mellitus.

    Matched MeSH terms: Tumor Necrosis Factor-alpha
  17. Tiong V, Shu MH, Wong WF, AbuBakar S, Chang LY
    Front Microbiol, 2018;9:2747.
    PMID: 30483242 DOI: 10.3389/fmicb.2018.02747
    Nipah virus (NiV) can infect multiple organs in humans with the central nervous system (CNS) being the most severely affected. Currently, it is not fully understood how NiV spreads throughout the body. NiV has been shown to infect certain leukocyte populations and we hypothesized that these infected cells could cross the blood-brain barrier (BBB), facilitating NiV entry into the CNS. Here, three leukocyte types, primary immature dendritic cells (iDC), primary monocytes (pMO), and monocytic cell line (THP-1), were evaluated for permissiveness to NiV. We found only iDC and THP-1 were permissive to NiV. Transendothelial migration of mock-infected and NiV-infected leukocytes was then evaluated using an in vitro BBB model established with human brain microvascular endothelial cells (HBMEC). There was approximately a threefold increase in migration of NiV-infected iDC across endothelial monolayer when compared to mock-infected iDC. In contrast, migration rates for pMO and THP-1 did not change upon NiV infection. Across TNF-α-treated endothelial monolayer, there was significant increase of almost twofold in migration of NiV-infected iDC and THP-1 over mock-infected cells. Immunofluorescence analysis showed the migrated NiV-infected leukocytes retained their ability to infect other cells. This study demonstrates for the first time that active NiV infection of iDC and THP-1 increased their transendothelial migration activity across HBMEC and activation of HBMEC by TNF-α further promoted migration. The findings suggest that NiV infection of leukocytes to disseminate the virus via the "Trojan horse" mechanism is a viable route of entry into the CNS.
    Matched MeSH terms: Tumor Necrosis Factor-alpha
  18. Sundar UM, Ugusman A, Chua HK, Latip J, Aminuddin A
    Front Pharmacol, 2019;10:1033.
    PMID: 31607906 DOI: 10.3389/fphar.2019.01033
    Asymmetric dimethylarginine (ADMA) is an endogenous inhibitor of endothelial nitric oxide synthase (eNOS). ADMA is degraded by dimethylarginine dimethylaminohydrolase (DDAH). Elevated levels of ADMA lead to reduction in nitric oxide (NO) production, which is linked to endothelial dysfunction and atherosclerosis. Piper sarmentosum is an herb that has shown stimulation on endothelial NO production by increasing both expression and activity of eNOS. Thus, this study determined whether the positive effect of P. sarmentosum on NO production is related to its modulation on the DDAH-ADMA pathway in cultured human umbilical vein endothelial cells (HUVEC) exposed to tumor necrosis factor-α (TNF-α). HUVEC were divided into four groups: control, treatment with 250 µg/ml of aqueous extract of P. sarmentosum leaves (AEPS), treatment with 30 ng/ml of TNF-α, and concomitant treatment with AEPS and TNF-α for 24 h. After treatments, HUVEC were collected to measure DDAH1 messenger RNA (mRNA) expression using quantitative real-time polymerase chain reaction. DDAH1 protein level was measured using enzyme-linked immunosorbent assay (ELISA), and DDAH enzyme activity was measured using colorimetric assay. ADMA concentration was measured using ELISA, and NO level was measured using Griess assay. Compared to control, TNF-α-treated HUVEC showed reduction in DDAH1 mRNA expression (P < 0.05), DDAH1 protein level (P < 0.01), and DDAH activity (P < 0.05). Treatment with AEPS successfully increased DDAH1 mRNA expression (P < 0.05), DDAH1 protein level (P < 0.01), and DDAH activity (P < 0.05) in TNF-α-treated HUVEC. Treatment with TNF-α caused an increase in ADMA level (P < 0.01) and a decrease in endothelial NO production (P < 0.001). Whereas treatment with AEPS was able to reduce ADMA level (P < 0.01) and restore NO (P < 0.001) in TNF-α-treated HUVEC. The results suggested that AEPS promotes endothelial NO production by stimulating DDAH activity and thus reducing ADMA level in TNF-α-treated HUVEC.
    Matched MeSH terms: Tumor Necrosis Factor-alpha
  19. Jafri MA, Kalamegam G, Abbas M, Al-Kaff M, Ahmed F, Bakhashab S, et al.
    Front Cell Dev Biol, 2019;7:380.
    PMID: 32010693 DOI: 10.3389/fcell.2019.00380
    Osteoarthritis (OA) is a chronic degenerative joint disorder associated with degradation and decreased production of the extracellular matrix, eventually leading to cartilage destruction. Limited chondrocyte turnover, structural damage, and prevailing inflammatory milieu prevent efficient cartilage repair and restoration of joint function. In the present study, we evaluated the role of secreted cytokines, chemokines, and growth factors present in the culture supernatant obtained from an ex vivo osteochondral model of cartilage differentiation using cartilage pellets (CP), bone marrow stem cells (BM-MSCs), and/or BM-MSCs + CP. Multiplex cytokine analysis showed differential secretion of growth factors (G-CSF, GM-CSF, HGF, EGF, VEGF); chemokines (MCP-1, MIP1α, MIP1β, RANTES, Eotaxin, IP-10), pro-inflammatory cytokines (IL-1β, IL-2, IL-5, IL-6, IL-8, TNFα, IL-12, IL-15, IL-17) and anti-inflammatory cytokines (IL-4, IL-10, and IL-13) in the experimental groups compared to the control. In silico analyses of the role of stem cells and CP in relation to the expression of various molecules, canonical pathways and hierarchical cluster patterns were deduced using the Ingenuity Pathway Analysis (IPA) software (Qiagen, United States). The interactions of the cytokines, chemokines, and growth factors that are involved in the cartilage differentiation showed that stem cells, when used together with CP, bring about a favorable cell signaling that supports cartilage differentiation and additionally helps to attenuate inflammatory cytokines and further downstream disease-associated pro-inflammatory pathways. Hence, the autologous or allogeneic stem cells and local cartilage tissues may be used for efficient cartilage differentiation and the management of OA.
    Matched MeSH terms: Tumor Necrosis Factor-alpha
  20. Ismail CAN, Aziz CBA, Suppian R, Long I
    J Diabetes Metab Disord, 2018 Dec;17(2):129-136.
    PMID: 30918846 DOI: 10.1007/s40200-018-0350-x
    Purpose: Diabetic neuropathy is a prolonged symptom of diabetes mellitus that affect a number of diabetes mellitus patients. So far, the variants of diabetic neuropathy, either painful (PDN) or non-painful (or painless, non-PDN) response have distinctive clinical entities. This study aims to determine the effects of oxidative stress parameters and pro-inflammatory factors at spinal cord level of streptozotocin-induced diabetic neuropathy rat model.

    Methods: Thirty Sprague-Dawley rats were randomly assigned to control (non-diabetic), PDN and non-PDN groups (n = 10). The rats were induced with diabetes by streptozotocin injection (60 mg/kg). Tactile allodynia and thermal hyperalgesia were assessed on day 0, 14 (week 2) and 21 (week 3) in the rats. The rats were sacrificed and the spinal cord tissue was collected for the measurement of oxidative stress (malondialdehyde (MDA), superoxide dismutase (SOD) and catalase) and pro-inflammatory markers (interleukin-1β (IL-1β) and tumour necrosis factor-α (TNF-α)).

    Results: PDN rats demonstrated a marked tactile allodynia with no thermal hyperalgesia whilst non-PDN rats exhibited a prominent hypo-responsiveness towards non-noxious stimuli and hypoalgesia towards thermal input. The MDA level and pro-inflammatory TNF-α was significantly increased in PDN rats whilst catalase was reduced in these rats. Meanwhile, non-PDN rats demonstrated reduced SOD enzyme activity and TNF-α level and increased MDA and catalase activity.

    Conclusion: The changes in oxidative stress parameters and pro-inflammatory factors may contribute to the changes in behavioural responses in both PDN and non-PDN rats.

    Matched MeSH terms: Tumor Necrosis Factor-alpha
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links