Soy protein isolate (SPI) gels were produced using single cross-linking agents (SCLA) of microbial transglutaminase (MTG) via incubation for 5 or 24 h (SCLA-MTG). When powdered SCLA-MTG gels were heated for 2 h with ribose (R2) (2 g/100 mL), dark brown gels were formed, and these were designated as combined cross-linking agent (CCLA) gels: MTG5(R2) and MTG24(R2). The results showed that the levels of Maillard-derived browning and cross-links of MTG5(R2) and MTG24(R2) gels were significantly (P < 0.05) lower than a control gel produced without MTG (SCLA-R2) even though the percentage of ribose remaining after heating of these gels was similar, indicating that a similar amount of ribose was consumed during heating. epsilon-(gamma-glutamyl)lysine bonds formed during incubation of SPI with MTG may have reduced the free amino group of SPI to take part in the Maillard reaction; nevertheless, ribose took part in the Maillard reaction and initiated the Maillard cross-linkings within the CCLA gels.
In this article, the use of low-cost adsorbents for the removal of methylene blue (MB) from solution has been reviewed. Adsorption techniques are widely used to remove certain classes of pollutants from waters, especially those which are not easily biodegradable. The removal of MB, as a pollutant, from waste waters of textile, paper, printing and other industries has been addressed by the researchers. Currently, a combination of biological treatment and adsorption on activated carbon is becoming more common for removal of dyes from wastewater. Although commercial activated carbon is a preferred adsorbent for color removal, its widespread use is restricted due to its relatively high cost which led to the researches on alternative non-conventional and low-cost adsorbents. The purpose of this review article is to organize the scattered available information on various aspects on a wide range of potentially low-cost adsorbents for MB removal. These include agricultural wastes, industrial solid wastes, biomass, clays minerals and zeolites. Agricultural waste materials being highly efficient, low cost and renewable source of biomass can be exploited for MB remediation. It is evident from a literature survey of about 185 recently published papers that low-cost adsorbents have demonstrated outstanding removal capabilities for MB.
Biological kinetic (bio-kinetic) study of the anaerobic stabilization pond treatment of palm oil mill effluent (POME) was carried out in a laboratory anaerobic bench scale reactor (ABSR). The reactor was operated at different feed flow-rates of 0.63, 0.76, 0.95, 1.27, 1.9 and 3.8l of raw POME for a day. Chemical oxygen demand (COD) as influent substrates was selected for bio-kinetic study. The investigation showed that the growth yield (Y(G)), specific biomass decay (b), maximum specific biomass growth rate (mu(max)), saturation constant (K(s)) and critical retention time (Theta(c)) were in the range of 0.990 g VSS/g COD(removed) day, 0.024 day(-1), 0.524 day(-1), 203.433 g COD l(-1) and 1.908 day, respectively.
Hemicelluloses from oil palm frond (OPF) were extracted using 3 M potassium hydroxide (KOH) for 4 h at 40 degrees C with stirring at 400 rpm to obtain hemicelluloses A and B. The total yield of the hemicellulose isolated from OPF was 33% (dry weight). Both hemicelluloses A and B were then subjected to hydrothermal treatment at 121 degrees C and 1.03 x 10(5) Pa for 10, 30, and 50 min. Physicochemical characterizations of hydrothermally treated hemicelluloses, such as Klason lignin content and reducing sugar content, were performed to study the effect of autohydrolysis processing on OPF-derived hemicelluloses. It was shown that Klason lignin content in hemicellulose A was higher than that in hemicellulose B and decreased after hydrothermal treatment. Hydrothermal treatment enhanced the solubility of hemicelluloses, which reflects their higher reducing sugar content. Monosaccharide analysis using HPLC showed that xylose was the predominant monosaccharide for both hemicelluloses A and B.
The copy numbers of 16S rRNA genes in 12 probiotic Lactobacillus strains of poultry origin were analyzed. Genomic DNA of the strains was digested with restriction endonucleases that do not cut within the 16S rRNA gene of the strains. This was followed by Southern hybridization with a biotinylated probe complementary to the 16S rRNA gene. The copy number of the 16S rRNA gene within a Lactobacillus species was found to be conserved. From the hybridization results, Lactobacillus salivarius I 24 was estimated to have seven copies of the 16S rRNA gene, Lactobacillus panis C 17 to have five copies and Lactobacillus gallinarum strains I 16 and I 26 four copies. The 16S rRNA gene copy numbers of L. gallinarum and L. panis reported in the present study are the first record. Lactobacillus brevis strains I 12, I 23, I 25, I 211, I 218 and Lactobacillus reuteri strains C 1, C 10, C 16 were estimated to have at least four copies of the 16S rRNA gene. In addition, distinct rRNA restriction patterns which could discriminate the strains of L. reuteri and L. gallinarum were also detected. Information on 16S rRNA gene copy number is important for physiological, evolutionary and population studies of the bacteria.
This paper examines the effectiveness of 10 additives toward improving SO2 sorption capacities (SSC) of rice husk ash (RHA)/lime (CaO) sorbent. The additives examined are NaOH, CaCl2, LiCl, NaHCO3, NaBr, BaCl2, KOH, K2HPO4, FeCl3 and MgCl2. Most of the additives tested increased the SSC of RHA/CaO sorbent, whereby NaOH gave highest SSC (30mg SO2/g sorbent) at optimum concentration (0.25mol/l) compared to other additives examined. The SSC of RHA/CaO sorbent prepared with NaOH addition was also increases from 17.2 to 39.5mg SO2/g sorbent as the water vapor increases from 0% RH to 80% RH. This is probably due to the fact that most of additives tested act as deliquescent material, and its existence increases the amount of water collected on the surface of the sorbent, which played an important role in the reaction between the dry-type sorbent and SO2. Although most of the additives were shown to have positive effect on the SSC of the RHA/CaO sorbent, some were found to have negative or insignificant effect. Thus, this study demonstrates that proper selection of additives can improve the SSC of RHA/CaO sorbent significantly.
Two Malaysian infectious bronchitis virus isolates, MH5365/95 and V9/04 were characterized based on sequence and phylogenetic analyses of S1, S2, M, and N genes. Nucleotide sequence alignments revealed many point mutations, short deletions, and insertions in S1 region of both IBV isolates. Phylogenetic analysis of S1 gene and sequences analysis of M gene indicated that MH5365/95 and V9/04 belong to non-Massachusetts strain. However, both isolates share only 77% identity. Analysis based on S1 gene showed that MH5365/95 shared more than 87% identity to several Chinese strains. Meanwhile, V9/04 showed only 67-77% identity to all the previously studied IBV strains included in this study suggesting it is a variant of IBV isolate that is unique to Malaysia. Phylogenetic analysis suggests, although both isolates were isolated 10 years apart from different states in Malaysia, they shared a common origin. Analysis based on S2 and N genes indicated that both strains are highly related to each other, and there are fewer mutations which occurred in the respective genes.
Blastocystis from infected stools of a person who showed chronic symptoms of abdominal discomfort and diarrhea were examined over a 6-month period, using transmission electron microscopy, for the ultrastructural changes from vacuolar to cystic stage. The study confirms the irregular shedding phenomenon of the organism previously reported, and for the first time, records sequential changes in encystation in stools collected over a time period. The study also confirms the existence of a precystic stage which has an immature cell wall consisting of a layer of a homogenous electron-dense mass surrounding the cell which acts as a intermediatory stage between the vacuolar and cystic stage.
In an effort to find potent inhibitors of the antiapoptotic protein Bcl-xL, a systematic in vitro evaluation was undertaken on 1470 Malaysian plant extracts. The ethyl acetate extract obtained from the bark of Meiogyne cylindrocarpa was selected for its interaction with the Bcl-xL/Bak association. Bioassay-guided purification of this species led to the isolation of two new dimeric sesquiterpenoids (1 and 2) possessing an unprecedented substituted cis-decalin carbon skeleton. Meiogynin A (1) showed the strongest activity with a K(i) of 10.8 +/- 3.1 microM.
A cytotoxic bisindole alkaloid possessing an unprecedented structure in which two indole moieties are bridged by an aromatic spacer unit has been isolated from Alstonia angustifolia. The structure was established by analysis of the spectroscopic data and confirmed by X-ray diffraction analysis. A possible biogenetic pathway from pyrocatechuic acid and pleiocarpamine is presented.
The Nipah virus outbreak in Malaysia (September 1998 to May 1999) resulted in 265 cases of acute encephalitis with 105 deaths, and near collapse of the billion-dollar pig-farming industry. Because it was initially attributed to Japanese encephalitis, early control measures were ineffective, and the outbreak spread to other parts of Malaysia and nearby Singapore. The isolation of the novel aetiological agent, the Nipah virus (NiV), from the cerebrospinal fluid of an outbreak victim was the turning point which led to outbreak control 2 months later. Together with the Hendra virus, NiV is now recognised as a new genus, Henipavirus (Hendra + Nipah), in the Paramyxoviridae family. Efforts of the local and international scientific community have since elucidated the epidemiology, clinico-pathophysiology and pathogenesis of this new disease. Humans contracted the infection from close contact with infected pigs, and formed the basis for pig-culling that eventually stopped the outbreak. NiV targeted medium-sized and small blood vessels resulting in endothelial multinucleated syncytia and fibrinoid necrosis. Autopsies revealed disseminated cerebral microinfarctions resulting from vasculitis-induced thrombosis and direct neuronal involvement. The discovery of NiV in the urine and saliva of Malaysian Island flying foxes (Pteropus hypomelanus and Petropus vampyrus) implicated these as natural reservoir hosts of NiV. It is probable that initial transmission of NiV from bats to pigs occurred in late 1997/early 1998 through contamination of pig swill by bat excretions, as a result of migration of these forest fruitbats to cultivated orchards and pig-farms, driven by fruiting failure of forest trees during the El Nino-related drought and anthropogenic fires in Indonesia in 1997-1998. This outbreak emphasizes the need for sharing information of any unusual illnesses in animals and humans, an open-minded approach and close collaboration and co-ordination between the medical profession, veterinarians and wildlife specialists in the investigation of such illnesses. Environmental mismanagement (such as deforestation and haze) has far-reaching effects, including encroachment of wildlife into human habitats and the introduction of zoonotic infections into domestic animals and humans.
Salmonella sp is a significant cause of morbidity and mortality. Although commonly infecting the gastrointestinal system, other presentations are not unheard of. Salmonella is an unlikely and an unusual cause of genital tract infection. We describe a woman with suspected pelvic inflammatory disease eventually confirmed as Salmonella O C2 infection.
The Candida species are the most common fungal pathogens of systemic candidiasis. The diagnosis of invasive candidiasis remains a laboratory and clinical challenge. Thus, development of diagnostic assays to detect systemic candidiasis and to identify Candida virulence factors and associated pathogenesis through immunohistochemistry using specific monoclonals and polyclonals will be useful. Inbred Balb/c mice were immunized with C. albicans antigens, and blood was checked for the presence of reactive antibodies using ELISA. Fusion was performed using the harvested spleen cells and NS1 myeloma cells, and the clones were screened for the presence of antibody producing hybrid cells by dot-blot. Western blot analysis showed that the L2D10 monoclonal antibody was reactive against the antigens with molecular weight of 20 kDa. Experimental systemic candidiasis in mice was induced through intravenous injection of C. albicans and all the vital organs were collected for immunohistochemistry study. The monoclonal antibody reacted to surface epitopes on the yeast cells, germ tubes, and hyphae, and to immune complexes. It was used with the polyclonal antibody in a sandwich ELISA for the detection of circulating antigens in experimental candiadiasis in mice. Antibody levels were also determined using the ELISA method, and the antibody levels of C. albicans infected mice were increased compared with uninfected animals. The monoclonal antibody was used in immunoperoxidase and immunofluorescence techniques for the detection of fungal infection in tissue sections and was found to be more sensitive than conventional periodic acid Schiff or silver staining techniques. This monoclonal antibody may serve as potential primary capture antibodies for the development of a rapid diagnostic test for human systemic fungal infection.
A comparative study to explore the characteristics of partially and fully packed biological aerated filters (BAFs) in the removal of carbon pollutant, reveals that the partial-bed reactor can perform comparably well with the full-bed reactor. The organic removal rate was 5.34 kg COD m(-3) d(-1) at Organic Loading Rates (OLR) 5.80+/-0.31 kg COD m(-3) d(-1) for the full-bed, and 5.22 kg COD m(-3) d(-1) at OLR 5.79+/-0.29 kg COD m(-3) d(-1) for the partial-bed. In the partial-bed system, where the masses of biomass were only 41-51% of those of the full-bed, the maximum carbon removal limit was still between 5 to 6 kg COD m(-3) d(-1). At organic loadings above 5.0 kg COD m(-3) d(-1), the carbon removal capacity in both systems was limited by the mass and activity of microorganisms. The SRT in the full and partial-bed reactors was primarily controlled by the biomass loss in the effluent and during backwash operation. The SRT was reduced from 20.08 days at OLR 4.18+/-0.20 kg COD m(-3) d(-1) to 7.62 days at OLR 5.80+/-0.31 kg COD m(-3) d(-1) in the full-bed, and from 7.17 days to 4.21 days in the partial-bed. After all, SRT values in the partial-bed were always lower than those in the full-bed.
Seven new indole alkaloids of the Aspidosperma type, jerantinines A-G (1-7), were isolated from a leaf extract of the Malayan Tabernaemontana corymbosa. The structures were established using NMR and MS analysis. Five of the alkaloids isolated and two derivatives (1-5, 8, 9) displayed pronounced in vitro cytotoxicity against human KB cells (IC50 < 1 microg/mL).
In 1998, a novel paramyxovirus (order Mononegavirales, family Paramyxoviridae, subfamily Paramyxovirinae, genus Henipavirus) emerged in peninsular Malaysia causing fatal encephalitis in humans and severe respiratory illness with encephalitis in pigs. The virus was successfully isolated in cultured mammalian cells. Transmission electron microscopy of infected tissue culture cells played a crucial role in the early preliminary identification of the causative agent of the outbreak. This in turn was pivotal to determine the correct direction of control measures that subsequently brought the epidemic under control. In light of this investigation, and indeed identification of infectious agents associated with other disease episodes, electron microscopy will remain an important frontline method for rapid diagnostic virology and investigation of any future outbreak of new and unusual cases of illness suspected of an infectious aetiology.