RESEARCH QUESTION: In critically ill patients, what is the association between preexisting malnutrition and time to discharge alive (TTDA), and does high protein treatment modify this association?
STUDY DESIGN AND METHODS: This multicenter randomized controlled trial involving 16 countries was designed to investigate the effects of high vs usual protein treatment in 1,301 critically ill patients. The primary outcome was TTDA. Multivariable regression was used to identify if preexisting malnutrition was associated with TTDA and if protein delivery modified their association.
RESULTS: The prevalence of preexisting malnutrition was 43.8%, and the cumulative incidence of live hospital discharge by day 60 was 41.2% vs 52.9% in the groups with and without preexisting malnutrition, respectively. The average protein delivery in the high vs usual treatment groups was 1.6 g/kg per day vs 0.9 g/kg per day. Preexisting malnutrition was independently associated with slower TTDA (adjusted hazard ratio, 0.81; 95% CI, 0.67-0.98). However, high protein treatment in patients with and without preexisting malnutrition was not associated with TTDA (adjusted hazard ratios of 0.84 [95% CI, 0.63-1.11] and 0.97 [95% CI, 0.77-1.21]). Furthermore, no effect modification was observed (ratio of adjusted hazard ratio, 0.84; 95% CI, 0.58-1.20).
INTERPRETATION: Malnutrition was associated with slower TTDA, but high protein treatment did not modify the association. These findings challenge current international critical care nutrition guidelines.
CLINICAL TRIAL REGISTRATION: ClinicalTrials.gov; No.: NCT03160547; URL: www.
CLINICALTRIALS: gov.
METHODS AND STUDY DESIGN: An observational study was conducted on 63 post-bariatric surgery patients who had undergone bariatric surgery between two weeks and five years after surgery. The participants were assessed for the complications experienced, current comorbidities, anthropometric changes, dietary intake, and psychological well-being. A three-day, 24-hour diet recall was done to assess the dietary intake of the patients. The mean macronutrient and micronutrient intakes were compared to several available recommendations. The DASS-21 questionnaire was administered to determine the psychological well-being of the participants.
RESULTS: The most common complications experienced by patients after bariatric surgery were hair loss (50.8%), gastroesophageal reflux disease (GERD) (49.2%), and vomiting (41.3%). There were significant differences in mean weight before (129.5 (33.0) kg/m2) and after (85.0 (32.0) kg/m2) bariatric surgery (p<0.001). The prevalence of clinically severe obesity declined by 55%. Overall, patients had insufficient intake of some nutrients such as protein, fat, calcium, and iron. Majority of the patients experienced a normal level of stress, anxiety, and depression, but some had mild (3.2%), moderate (4.8%), and severe anxiety (1.6%).
CONCLUSIONS: There were drastic improvements in patients' weight following bariatric surgery. However, there were several complications including nutrient deficiencies. Due to the anatomical changes in the gastrointestinal tract, patients must comply with the dietary and lifestyle changes and follow up with the healthcare professional. A nutrition module will be helpful for patients to prepare for and adapt to the changes after bariatric surgery.
STUDY DESIGN: To assess the attributable burden of injury risk factors, the data of interest on data sources were retrieved from the Global Health Data Exchange (GHDx) and analyzed.
METHODS: Cause-specific death from injuries was estimated using the Cause of Death Ensemble model in the GBD 2019. The burden attributable to each injury risk factor was incorporated in the population attributable fraction to estimate the total attributable deaths and disability-adjusted life years. The Socio-demographic Index (SDI) was used to evaluate countries' developmental status.
RESULTS: Globally, there were 713.9 million (95% uncertainty interval [UI]: 663.8 to 766.9) injuries incidence and 4.3 million (UI: 3.9 to 4.6) deaths caused by injuries in 2019. There was an inverse relationship between age-standardized disability-adjusted life year rate and SDI quintiles in 2019. Overall, low bone mineral density was the leading risk factor of injury deaths in 2019, with a contribution of 10.5% (UI: 9.0 to 11.6) of total injuries and age-standardized deaths, followed by occupational risks (7.0% [UI: 6.3-7.9]) and alcohol use (6.8% [UI: 5.2 to 8.5]).
CONCLUSION: Various risks were responsible for the imposed burden of injuries. This study highlighted the small but persistent share of injuries in the global burden of diseases and injuries to provide beneficial data to produce proper policies to reach an effective global injury prevention plan.
OBJECTIVE: To investigate clinical laboratory markers of SARS-CoV-2 and PASC.
DESIGN: Propensity score-weighted linear regression models were fitted to evaluate differences in mean laboratory measures by prior infection and PASC index (≥12 vs. 0). (ClinicalTrials.gov: NCT05172024).
SETTING: 83 enrolling sites.
PARTICIPANTS: RECOVER-Adult cohort participants with or without SARS-CoV-2 infection with a study visit and laboratory measures 6 months after the index date (or at enrollment if >6 months after the index date). Participants were excluded if the 6-month visit occurred within 30 days of reinfection.
MEASUREMENTS: Participants completed questionnaires and standard clinical laboratory tests.
RESULTS: Among 10 094 participants, 8746 had prior SARS-CoV-2 infection, 1348 were uninfected, 1880 had a PASC index of 12 or higher, and 3351 had a PASC index of zero. After propensity score adjustment, participants with prior infection had a lower mean platelet count (265.9 × 109 cells/L [95% CI, 264.5 to 267.4 × 109 cells/L]) than participants without known prior infection (275.2 × 109 cells/L [CI, 268.5 to 282.0 × 109 cells/L]), as well as higher mean hemoglobin A1c (HbA1c) level (5.58% [CI, 5.56% to 5.60%] vs. 5.46% [CI, 5.40% to 5.51%]) and urinary albumin-creatinine ratio (81.9 mg/g [CI, 67.5 to 96.2 mg/g] vs. 43.0 mg/g [CI, 25.4 to 60.6 mg/g]), although differences were of modest clinical significance. The difference in HbA1c levels was attenuated after participants with preexisting diabetes were excluded. Among participants with prior infection, no meaningful differences in mean laboratory values were found between those with a PASC index of 12 or higher and those with a PASC index of zero.
LIMITATION: Whether differences in laboratory markers represent consequences of or risk factors for SARS-CoV-2 infection could not be determined.
CONCLUSION: Overall, no evidence was found that any of the 25 routine clinical laboratory values assessed in this study could serve as a clinically useful biomarker of PASC.
PRIMARY FUNDING SOURCE: National Institutes of Health.