Displaying all 14 publications

Abstract:
Sort:
  1. Nasreen HE, Alam MA, Edhborg M
    PMID: 27553260 DOI: 10.1111/jcap.12150
    Few studies have examined the adolescents' depression in low-income countries and no research has yet been carried out in Bangladesh. This study estimated the prevalence of depressive symptoms and explored the associated factors and help seeking behavior among adolescents in Bangladesh.
  2. Alam MA, Juraimi AS, Rafii MY, Abdul Hamid A
    Biomed Res Int, 2015;2015:105695.
    PMID: 25802833 DOI: 10.1155/2015/105695
    13 selected purslane accessions were subjected to five salinity levels 0, 8, 16, 24, and 32 dS m(-1). Salinity effect was evaluated on the basis of biomass yield reduction, physiological attributes, and stem-root anatomical changes. Aggravated salinity stress caused significant (P < 0.05) reduction in all measured parameters and the highest salinity showed more detrimental effect compared to control as well as lower salinity levels. The fresh and dry matter production was found to increase in Ac1, Ac9, and Ac13 from lower to higher salinity levels but others were badly affected. Considering salinity effect on purslane physiology, increase in chlorophyll content was seen in Ac2, Ac4, Ac6, and Ac8 at 16 dS m(-1) salinity, whereas Ac4, Ac9, and Ac12 showed increased photosynthesis at the same salinity levels compared to control. Anatomically, stem cortical tissues of Ac5, Ac9, and Ac12 were unaffected at control and 8 dS m(-1) salinity but root cortical tissues did not show any significant damage except a bit enlargement in Ac12 and Ac13. A dendrogram was constructed by UPGMA based on biomass yield and physiological traits where all 13 accessions were grouped into 5 clusters proving greater diversity among them. The 3-dimensional principal component analysis (PCA) has also confirmed the output of grouping from cluster analysis. Overall, salinity stressed among all 13 purslane accessions considering biomass production, physiological growth, and anatomical development Ac9 was the best salt-tolerant purslane accession and Ac13 was the most affected accession.
  3. Alam MA, Juraimi AS, Rafii MY, Hamid AA, Arolu IW, Abdul Latif M
    C. R. Biol., 2015 Jan;338(1):1-11.
    PMID: 25468001 DOI: 10.1016/j.crvi.2014.10.007
    Genetic diversity and relationships among 45 collected purslane accessions were evaluated using ISSR markers. The 28 primers gave a total of 167 bands, among which 163 were polymorphic (97.6%). The genetic diversity as estimated by Shannon's information index was 0.513, revealing a quite high level of genetic diversity in the germplasm. The average number of observed allele, effective allele, expected heterozygosity, polymorphic information content (PIC) and Nei's index were 5.96, 1.59, 0.43, 0.35 and 0.35, respectively. The UPGMA dendrogram based on Nei's genetic distance grouped the whole germplasm into 7 distinct clusters. The analysis of molecular variance (AMOVA) revealed that 89% of total variation occurred within population, while 11% were found among populations. Based on the constructed dendrogram using ISSR markers those accessions that are far from each other by virtue of genetic origin and diversity index (like Ac1 and Ac42; Ac19 and Ac45; Ac9 and Ac23; Ac18 and A25; Ac24 and Ac18) are strongly recommended to select as parent for future breeding program to develop high yielding and stress tolerant purslane variety in contribution to global food security.
  4. Alam MA, Juraimi AS, Rafii MY, Hamid AA, Aslani F
    ScientificWorldJournal, 2014;2014:627916.
    PMID: 25003141 DOI: 10.1155/2014/627916
    Purslane (Portulaca oleracea L.) is an herbaceous leafy vegetable crop, comparatively more salt-tolerant than any other vegetables with high antioxidants, minerals, and vitamins. Salt-tolerant crop variety development is of importance due to inadequate cultivable land and escalating salinity together with population pressure. In this view a total of 25 purslane accessions were initially selected from 45 collected purslane accessions based on better growth performance and subjected to 5 different salinity levels, that is, 0.0, 10.0, 20.0, 30.0, and 40.0 dS m(-1) NaCl. Plant height, number of leaves, number of flowers, and dry matter contents in salt treated purslane accessions were significantly reduced (P ≤ 0.05) and the enormity of reduction increased with increasing salinity stress. Based on dry matter yield reduction, among all 25 purslane accessions 2 accessions were graded as tolerant (Ac7 and Ac9), 6 accessions were moderately tolerant (Ac3, Ac5, Ac6, Ac10, Ac11, and Ac12), 5 accessions were moderately susceptible (Ac1, Ac2, Ac4, Ac8, and Ac13), and the remaining 12 accessions were susceptible to salinity stress and discarded from further study. The selected 13 purslane accessions could assist in the identification of superior genes for salt tolerance in purslane for improving its productivity and sustainable agricultural production.
  5. Alam MA, Juraimi AS, Rafii MY, Hamid AA, Aslani F, Hakim MA
    Biol. Res., 2016 Apr 18;49:24.
    PMID: 27090643 DOI: 10.1186/s40659-016-0084-5
    This study was undertaken to determine the effects of varied salinity regimes on the morphological traits (plant height, number of leaves, number of flowers, fresh and dry weight) and major mineral composition of 13 selected purslane accessions. Most of the morphological traits measured were reduced at varied salinity levels (0.0, 8, 16, 24 and 32 dS m(-1)), but plant height was found to increase in Ac1 at 16 dS m(-1) salinity, and Ac13 was the most affected accession. The highest reductions in the number of leaves and number of flowers were recorded in Ac13 at 32 dS m(-1) salinity compared to the control. The highest fresh and dry weight reductions were noted in Ac8 and Ac6, respectively, at 32 dS m(-1) salinity, whereas the highest increase in both fresh and dry weight was recorded in Ac9 at 24 dS m(-1) salinity compared to the control. In contrast, at lower salinity levels, all of the measured mineral levels were found to increase and later decrease with increasing salinity, but the performance of different accessions was different depending on the salinity level. A dendrogram was also constructed by UPGMA based on the morphological traits and mineral compositions, in which the 13 accessions were grouped into 5 clusters, indicating greater diversity among them. A three-dimensional principal component analysis also confirmed the output of grouping from cluster analysis.
  6. Hasan MM, Rafii MY, Ismail MR, Mahmood M, Alam MA, Abdul Rahim H, et al.
    J Sci Food Agric, 2016 Mar 15;96(4):1297-305.
    PMID: 25892666 DOI: 10.1002/jsfa.7222
    Blast caused by the fungus Magnaporthe oryzae is a significant disease threat to rice across the world and is especially prevalent in Malaysia. An elite, early-maturing, high-yielding Malaysian rice variety, MR263, is susceptible to blast and was used as the recurrent parent in this study. To improve MR263 disease resistance, the Pongsu Seribu 1 rice variety was used as donor of the blast resistance Pi-7(t), Pi-d(t)1 and Pir2-3(t) genes and qLN2 quantitative trait locus (QTL). The objective was to introgress these blast resistance genes into the background of MR263 using marker-assisted backcrossing with both foreground and background selection.
  7. Hasan MM, Rafii MY, Ismail MR, Mahmood M, Rahim HA, Alam MA, et al.
    Biotechnology, biotechnological equipment, 2015 Mar 04;29(2):237-254.
    PMID: 26019637
    The world's population is increasing very rapidly, reducing the cultivable land of rice, decreasing table water, emerging new diseases and pests, and the climate changes are major issues that must be addressed to researchers to develop sustainable crop varieties with resistance to biotic and abiotic stresses. However, recent scientific discoveries and advances particularly in genetics, genomics and crop physiology have opened up new opportunities to reduce the impact of these stresses which would have been difficult if not impossible as recently as the turn of the century. Marker assisted backcrossing (MABC) is one of the most promising approaches is the use of molecular markers to identify and select genes controlling resistance to those factors. Regarding this, MABC can contribute to develop resistant or high-yielding or quality rice varieties by incorporating a gene of interest into an elite variety which is already well adapted by the farmers. MABC is newly developed efficient tool by which using large population sizes (400 or more plants) for the backcross F1 generations, it is possible to recover the recurrent parent genotype using only two or three backcrosses. So far, many high yielding, biotic and abiotic stresses tolerance, quality and fragrance rice varieties have been developed in rice growing countries through MABC within the shortest timeframe. Nowadays, MABC is being used widely in plant breeding programmes to develop new variety/lines especially in rice. This paper reviews recent literature on some examples of variety/ line development using MABC strategy.
  8. Alam MA, Juraimi AS, Rafii MY, Abdul Hamid A, Aslani F, Hasan MM, et al.
    Biomed Res Int, 2014;2014:296063.
    PMID: 24579078 DOI: 10.1155/2014/296063
    The methanolic extracts of 13 accessions of purslane were analyzed for their total phenol content (TPC), total flavonoid contents (TFC), and total carotenoid contents (TCC) and antioxidant activity of extracts was screened using FRAP assay and DPPH radical scavenging methods. The TPC, TFC, and TCC ranged from 0.96 ± 0.04 to 9.12 ± 0.29 mg GAE/g DW, 0.13 ± 0.04 to 1.44 ± 0.08 mg RE/g DW, and 0.52 ± 0.06 to 5.64 ± 0.09 mg (β-carotene equivalent) BCE/g DW, respectively. The DPPH scavenging (IC50) activity varied between 2.52 ± 0.03 mg/mL and 3.29 ± 0.01 mg/mL and FRAP ranged from 7.39 ± 0.08 to 104.2 ± 6.34  μmol TE/g DW. Among all the measured micro- and macrominerals K content was the highest followed by N, Na, Ca, Mg, P, Fe, Zn, and Mn. The overall findings proved that ornamental purslane was richer in antioxidant properties, whereas common purslane possesses more mineral contents than ornamental ones.
  9. Ahmad N, Ahmad R, Alam MA, Ahmad FJ, Amir M, Pottoo FH, et al.
    Int J Biol Macromol, 2019 May 01;128:825-838.
    PMID: 30690115 DOI: 10.1016/j.ijbiomac.2019.01.142
    BACKGROUND: Daunorubicin hydrochloride (DAUN·HCl), due to low oral bioavailability poses the hindrance to be marketed as an oral formulation.

    AIM OF THE STUDY: To develop a natural biodegradable macromolecule i.e. Chitosan (CS)-coated-DAUN-PLGA-poly(lactic-co-glycolic acid)-Nanoparticles (NPs) with an aim to improve oral-DAUN bioavailability and to develop as well as validate UHPLC-MS/MS (ESI/Q-TOF) method for plasma quantification and pharmacokinetic analysis (PK) of DAUN.

    RESULTS: A particle size (198.3 ± 9.21 nm), drug content (47.06 ± 1.16 mg/mg) and zeta potential (11.3 ± 0.98 mV), consisting of smooth and spherical shape was observed for developed formulation. Cytotoxicity studies for CS-DAUN-PLGA-NPs revealed; a comparative superiority over free DAUN-S (i.v.) in human breast adenocarcinoma cell lines (MCF-7) and a higher permeability i.e. 3.89 folds across rat ileum, as compared to DAUN-PLGA-NPs (p 

  10. Nevame AYM, Emon RM, Malek MA, Hasan MM, Alam MA, Muharam FM, et al.
    Biomed Res Int, 2018;2018:1653721.
    PMID: 30065932 DOI: 10.1155/2018/1653721
    Occurrence of chalkiness in rice is attributed to genetic and environmental factors, especially high temperature (HT). The HT induces heat stress, which in turn compromises many grain qualities, especially transparency. Chalkiness in rice is commonly studied together with other quality traits such as amylose content, gel consistency, and protein storage. In addition to the fundamental QTLs, some other QTLs have been identified which accelerate chalkiness occurrence under HT condition. In this review, some of the relatively stable chalkiness, amylose content, and gel consistency related QTLs have been presented well. Genetically, HT effect on chalkiness is explained by the location of certain chalkiness gene in the vicinity of high-temperature-responsive genes. With regard to stable QTL distribution and availability of potential material resources, there is still feasibility to find out novel stable QTLs related to chalkiness under HT condition. A better understanding of those achievements is essential to develop new rice varieties with a reduced chalky grain percentage. Therefore, we propose the pyramiding of relatively stable and nonallelic QTLs controlling low chalkiness endosperm into adaptable rice varieties as pragmatic approach to mitigate HT effect.
  11. Alam MA, Zaidul IS, Ghafoor K, Sahena F, Hakim MA, Rafii MY, et al.
    BMC Complement Altern Med, 2017 Mar 31;17(1):181.
    PMID: 28359331 DOI: 10.1186/s12906-017-1684-5
    BACKGROUND: This study was aimed to evaluate antioxidant and α-glucosidase inhibitory activity, with a subsequent analysis of total phenolic and total flavonoid content of methanol extract and its derived fractions from Clinacanthus nutans accompanied by comprehensive phytochemical profiling.

    METHODS: Liquid-liquid partition chromatography was used to separate methanolic extract to get hexane, ethyl acetate, butanol and residual aqueous fractions. The total antioxidant activity was determined by 2,2-diphenyl-1-picrylhydrazy (DPPH) radical scavenging and ferric reducing antioxidant power assay (FRAP). The antidiabetic activity of methanol extract and its consequent fractions were examined by α-glucosidase inhibitory bioassay. The chemical profiling was carried out by gas chromatography coupled with quadrupole time-of-flight mass spectrometry (GC Q-TOF MS).

    RESULTS: The total yield for methanol extraction was (12.63 ± 0.98) % (w/w) and highest fractionated value found for residual aqueous (52.25 ± 1.01) % (w/w) as compared to the other fractions. Significant DPPH free radical scavenging activity was found for methanolic extract (63.07 ± 0.11) % and (79.98 ± 0.31) % for ethyl acetate fraction among all the fractions evaluated. Methanol extract was the most prominent in case of FRAP (141.89 ± 0.87 μg AAE/g) whereas most effective reducing power observed in ethyl acetate fraction (133.6 ± 0.2987 μg AAE/g). The results also indicated a substantial α-glucosidase inhibitory activity for butanol fraction (72.16 ± 1.0) % and ethyl acetate fraction (70.76 ± 0.49) %. The statistical analysis revealed that total phenolic and total flavonoid content of the samples had the significant (p 

  12. Rahman MM, Ferdous KU, Roy S, Nitul IA, Mamun F, Hossain MH, et al.
    Food Sci Nutr, 2020 Jul;8(7):3578-3589.
    PMID: 32724620 DOI: 10.1002/fsn3.1640
    Amla (Emblica officinalis Gaertn.) is a natural source of antioxidants and possesses valuable medicinal properties. However, the protective effect of amla in the kidney of two-kidneys-one-clip (2K1C) rats has not been explained sufficiently. This study was performed to evaluate the renoprotective effect of amla fruit powder (2.5% W/W) supplementation in kidneys of 2K1C rats. 2K1C rats increased the remnant kidney wet weight and also increased plasma creatinine and uric acid concentration compared to the control. Amla supplementation ameliorates elevated creatinine and uric acid concentration in plasma of 2K1C rats. Various oxidative stress indicators such as malondialdehyde, nitric oxide (NO), and advanced protein oxidation product (APOP) were also increased in plasma, heart, and kidney tissues in 2K1C rats that were also significantly brought down to normal level by amla supplementation. Moreover, the inflammatory cells entry and fibrosis in the 2K1C rat's tissues were prevented by amla supplementation. These research results suggest that amla may restore plasma antioxidant capacities and prevents oxidative stress, inflammation, and fibrosis in 2K1C rats. Taken these results as a base, clinical supplementation of dried amla powder in diet or juice to the CKD patients would be beneficial.
  13. Khan R, H Ya H, Pao W, Majid MAA, Ahmed T, Ahmad A, et al.
    Materials (Basel), 2020 Oct 16;13(20).
    PMID: 33081078 DOI: 10.3390/ma13204601
    Erosion-corrosion of elbow configurations has recently been a momentous concern in hydrocarbon processing and transportation industries. The carbon steel 90° elbows are susceptible to the erosion-corrosion during the multiphase flow, peculiarly for erosive slug flows. This paper studies the erosion-corrosion performance of 90° elbows at slug flow conditions for impact with 2, 5, and 10 wt.% sand fines concentrations on AISI 1018 carbon steel exploiting quantitative and qualitative analyses. The worn surface analyses were effectuated by using laser confocal and scanning electron microscopy. The experiment was conducted under air and water slug flow containing sand fines of 50 µm average size circulated in the closed flow loop. The results manifest that with the increase of concentration level, the erosion-corrosion magnitude increases remarkably. Sand fines instigate the development of perforation sites in the form of circular, elongated, and coalescence pits at the elbow downstream and the corrosion attack is much more obvious with the increase of sand fines concentration. Another congruent finding is that cutting and pitting corrosion as the primitive causes of material degradation, the 10 wt.% sand fines concentration in carrier phase increases the erosion-corrosion rate of carbon steel up to 93% relative to the 2 wt.% sand fines concentration in slug flow.
  14. Nevame AYM, Xia L, Nchongboh CG, Hasan MM, Alam MA, Yongbo L, et al.
    Biomed Res Int, 2018;2018:8120281.
    PMID: 30105248 DOI: 10.1155/2018/8120281
    Tomato yellow leaf curl virus (TYLCV) responsible for tomato yellow leaf curl disease (TYLCD) causes a substantial decrease in tomato (Solanum lycopersicum L.) yield worldwide. The use of resistant variety as a sustainable management strategy has been advocated. Tremendous progress has been made in genetically characterizing the resistance genes (R gene) in tomato. Breeding tomato for TYLCV resistance has been based mostly on Ty-3 as a race-specific resistance gene by introgression originating from wild tomato species relatives. Improvement or development of a cultivar is achievable through the use of marker-assisted selection (MAS). Therefore, precise and easy use of gene-targeted markers would be of significant importance for selection in breeding programs. The present study was undertaken to develop a new marker based on Ty-3 gene sequence that can be used for MAS in TYLCV resistant tomato breeding program. The new developed marker was named ACY. The reliability and accuracy of ACY were evaluated against those of Ty-3 linked marker P6-25 through screening of commercial resistant and susceptible tomato hybrids, and genetic segregation using F2 population derived from a commercial resistant hybrid AG208. With the use of bioinformatics and DNA sequencing analysis tools, deletion of 10 nucleotides was observed in Ty-3 gene sequence for susceptible tomato variety. ACY is a co-dominant indel-based marker that produced clear and strong polymorphic band patterns for resistant plant distinguishing it from its susceptible counterpart. The obtained result correlates with 3:1 segregation ratio of single resistant dominant gene inheritance, which depicted ACY as gene-tag functional marker. This marker is currently in use for screening 968 hybrids varieties and one thousand breeding lines of tomato varieties stocked in Jiangsu Green Port Modern Agriculture Development Company (Green Port). So far, ACY has been used to identify 56 hybrids and 51 breeding lines. These newly detected breeding lines were regarded as potential source of resistance for tomato breeding. This work exploited the sequence of Ty-3 and subsequently contributed to the development of molecular marker ACY to aid phenotypic selection. We thus recommend this marker to breeders, which is suitable for marker-assisted selection in tomato.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (tengcl@gmail.com)

External Links