METHODS: Postbiotic metabolites (PM) produced by six strains of L. plantarum were determined for their antiproliferative and cytotoxic effects on normal human primary cells, breast, colorectal, cervical, liver and leukemia cancer cell lines via MTT assay, trypan blue exclusion method and BrdU assay. The toxicity of PM was determined for human and various animal red blood cells via haemolytic assay. The cytotoxicity mode was subsequently determined for selected UL4 PM on MCF-7 cells due to its pronounced cytotoxic effect by fluorescent microscopic observation using AO/PI dye reagents and flow cytometric analyses.
RESULTS: UL4 PM exhibited the lowest IC50 value on MCF-7, RG14 PM on HT29 and RG11 and RI11 PM on HL60 cell lines, respectively from MTT assay. Moreover, all tested PM did not cause haemolysis of human, dog, rabbit and chicken red blood cells and demonstrated no cytotoxicity on normal breast MCF-10A cells and primary cultured cells including human peripheral blood mononuclear cells, mice splenocytes and thymocytes. Antiproliferation of MCF-7 and HT-29 cells was potently induced by UL4 and RG 14 PM respectively after 72 h of incubation at the concentration of 30% (v/v). Fluorescent microscopic observation and flow cytometric analyses showed that the pronounced cytotoxic effect of UL4 PM on MCF-7 cells was mediated through apoptosis.
CONCLUSION: In conclusion, PM produced by the six strains of L. plantarum exhibited selective cytotoxic via antiproliferative effect and induction of apoptosis against malignant cancer cells in a strain-specific and cancer cell type-specific manner whilst sparing the normal cells. This reveals the vast potentials of PM from L. plantarum as functional supplement and as an adjunctive treatment for cancer.
MATERIALS AND METHODS: A total of 182 poultry and environmental samples were collected at random on separate occasions from wet markets and small scale processing plant, during the period of October 2014 to July 2015 in Penang and Perlis, Malaysia. The samples were analyzed for the presence of Salmonella using ISO 6579:2002 conventional culture-based method. Presumptive Salmonella colonies were subjected to various biochemical tests (such as triple sugar iron and lysine iron test), serologically confirmed using polyvalent O and H antisera and further serotyped at Public Health Laboratory, Ministry of Health, Perak, Malaysia.
RESULTS: Salmonella serotypes were isolated from 161 out of 182 samples (88.46%) with 100% prevalence in the whole chicken carcass and chicken cuts - as well as transport crate, cage, drum, knife, chopping board, display table, floor, bench wash water, wash water, and drain water. Salmonella was isolated from 91.67%, 83.33%, and 66.67% of defeathering machines, drain swabs, and apron, respectively. 17 serotypes were isolated in this study with Salmonella Albany (57/161), Salmonella Corvallis (42/161), and Salmonella Brancaster (37/161) being the predominant serovars.
CONCLUSION: The most carcass contact and environmental samples collected along the wet market chicken processing line were consistently contaminated with Salmonella. This indicates that Salmonella has established itself in poultry processing environments by colonizing the surfaces of the equipment and survives in these environments by establishing biofilms. Our results highlight the need of implementing strict hygiene and sanitation standards to reduce the incidence of Salmonella. The prevalence of Salmonella in poultry can be reduced effectively by identifying and eliminating the sources and contamination sites during slaughter and processing of poultry.