Displaying all 9 publications

Abstract:
Sort:
  1. Rahmawati R, Hartati YW, Latip JB, Herlina T
    J Sep Sci, 2023 Jun;46(12):e2200800.
    PMID: 36715692 DOI: 10.1002/jssc.202200800
    Plants in the genus Erythrina is a potential source of chemical constituents, one of which is flavonoids, which have diverse bioactivities. To date, literature on the flavonoids from the genus Erythrina has only highlighted the phytochemical aspects, so this review article will discuss isolation techniques and strategies for the first time. More than 420 flavonoids have been reported in the Erythrina genus, which are grouped into 17 categories. These flavonoid compounds were obtained through isolation techniques and strategies using polar, semi-polar, and non-polar solvents. Various chromatographic techniques have been developed to isolate flavonoids using column flash chromatography, quick column chromatography, centrifugally accelerated thin-layer chromatography, radial chromatography, medium-pressure column chromatography, semi-preparative high-performance liquid chromatography, and preparative high-performance liquid chromatography. Chromatographic processes for isolating flavonoids can be optimized using multivariate statistical applications such as response surface methodology with central composite design, Box-Behnken design, Doehlert design, and mixture design.
  2. Akili AWR, Hardianto A, Latip J, Permana A, Herlina T
    Molecules, 2023 Dec 08;28(24).
    PMID: 38138500 DOI: 10.3390/molecules28248010
    The emergence of antimicrobial resistance due to the widespread and inappropriate use of antibiotics has now become the global health challenge. Flavonoids have long been reported to be a potent antimicrobial agent against a wide range of pathogenic microorganisms in vitro. Therefore, new antibiotics development based on flavonoid structures could be a potential strategy to fight against antibiotic-resistant infections. This research aims to screen the potency of flavonoids of the genus Erythrina as an inhibitor of bacterial ATPase DNA gyrase B. From the 378 flavonoids being screened, 49 flavonoids show potential as an inhibitor of ATPase DNA gyrase B due to their lower binding affinity compared to the inhibitor and ATP. Further screening for their toxicity, we identified 6 flavonoids from these 49 flavonoids, which are predicted to have low toxicity. Among these flavonoids, erystagallin B (334) is predicted to have the best pharmacokinetic properties, and therefore, could be further developed as new antibacterial agent.
  3. Eryanti Y, Zamri A, Herlina T, Supratman U, Rosli MM, Fun HK
    Acta Crystallogr E Crystallogr Commun, 2015 Dec 01;71(Pt 12):1488-92.
    PMID: 26870411 DOI: 10.1107/S2056989015020976
    The title compounds, C20H19NO3, (1), and C20H17Cl2NO, (2), are the 3-hy-droxy-benzyl-idene and 2-chloro-benzyl-idene derivatives, respectively, of curcumin [systematic name: (1E,6E)-1,7-bis-(4-hy-droxy-3-meth-oxy-phen-yl)-1,6-hepta-diene-3,5-dione]. The dihedral angles between the benzene rings in each compound are 21.07 (6)° for (1) and 13.4 (3)° for (2). In both compounds, the piperidinone rings adopt a sofa confirmation and the methyl group attached to the N atom is in an equatorial position. In the crystal of (1), two pairs of O-H⋯N and O-H⋯O hydrogen bonds link the mol-ecules, forming chains along [10-1]. The chains are linked via C-H⋯O hydrogen bonds, forming undulating sheets parallel to the ac plane. In the crystal of (2), mol-ecules are linked by weak C-H⋯Cl hydrogen bonds, forming chains along the [204] direction. The chains are linked along the a-axis direction by π-π inter-actions [inter-centroid distance = 3.779 (4) Å]. For compound (2), the crystal studied was a non-merohedral twin with the refined ratio of the twin components being 0.116 (6):0.886 (6).
  4. Supriatno, Nurlelasari, Herlina T, Harneti D, Maharani R, Hidayat AT, et al.
    Nat Prod Res, 2018 Nov;32(21):2610-2616.
    PMID: 29368952 DOI: 10.1080/14786419.2018.1428600
    A new limonoid, pentandricine (1), along with three known limonoids, ceramicine B (2), 6-de(acetyloxy)-23-oxochisocheton (3), 6-de(acetyloxy)-23-oxo-7-O-deacetylchisocheton (4), have been isolated from the stembark of Chisocheton pentandrus. The chemical structures of the new compound were elucidated on the basis of spectroscopic evidence. All of the compounds were tested for their cytotoxic effects against MCF-7 breast cancer cells. Compounds 1-4 showed weak and no cytotoxicity against MCF-7 breast cancer cells with IC50 values of 369.84, 150.86, 208.93 and 120.09 μM, respectively.
  5. Herlina T, Rizaldi Akili AW, Nishinarizki V, Hardianto A, Latip JB
    Heliyon, 2025 Jan 15;11(1):e41395.
    PMID: 39811340 DOI: 10.1016/j.heliyon.2024.e41395
    The Fabaceae family, particularly genus Erythrina, is renowned for significant medicinal properties. These plants have been used as natural remedies to address various health issues and are rich in flavonoids. Therefore, this review aimed to provide a comprehensive overview of antibacterial activity, structure-activity relationship, especially against drug-resistance Staphylococcus aureus, and mode of action for flavonoids isolated from Erythrina. Data were collected from reputable electronic scholarly resources focusing on publications from 2000 to 2022. The results showed that the evaluated flavonoids include 31 % pterocarpans, 22 % flavanones, 20 % isoflavanones, 18 % isoflavones, 4 % isoflavans, 3 % isoflav-3-enes, 1 % 3-arylcoumarins, and 1 % coumestans. Most of these compounds in Erythrina plants were extracted from the roots and stem bark. Among these group of flavonoids, pterocarpan stands out as the most active class against S. aureus. Structure-activity relationship study emphasized pivotal contribution of the prenyl functional group to enhance antibacterial activity of flavonoids. Increasing the number of prenyl groups enhanced antibacterial effectiveness while modifying the group reduced this activity. The proposed antibacterial mechanisms of these flavonoids include the suppression of nucleic acid synthesis, disruption of cytoplasmic membrane function, and modulation of energy metabolism. Among the potent antibacterial flavonoids from genus Erythrina, compound 3,9-dihyroxy-10-γ,γ-dimethylallyl-6a,11a-dehydropterocarpan was found as the most potent against Methicillin-Resistant Staphylococcus aureus (MRSA) through the inhibition of nucleic acid synthesis. Other common flavonoids such as genistein, daidzein, apigenin, and luteolin exert antibacterial activity through the inhibition of ATP synthase.
  6. Permana A, Akili AWR, Hardianto A, Latip JB, Sulaeman AP, Herlina T
    Adv Appl Bioinform Chem, 2024;17:179-201.
    PMID: 39931375 DOI: 10.2147/AABC.S495947
    PURPOSE: Alzheimer's disease (AD) is a progressive neurodegenerative disorder with limited treatment options, necessitating the development of safer and more effective therapies. The potential of alkaloids derived from the genus Erythrina as acetylcholinesterase (AChE) inhibitors is being investigated to enhance acetylcholine levels in the brain, which is crucial for the treatment of AD. The objective of this study is to identify Erythrina alkaloids with strong inhibitory capacity against AChE and favorable pharmacokinetic profiles.

    MATERIALS AND METHODS: A multi-step computational approach was employed, beginning with the virtual screening of 143 Erythrina alkaloid structures using molecular docking against the human AChE crystal structure. The binding affinities were compared with the known AChE inhibitor, galantamine. The top alkaloid, 8-oxoerymelanthine (128), was subjected to further analysis through molecular dynamics simulations, with the objective of evaluating its stability and interactions. In silico ADMET predictions were conducted to assess the pharmacokinetic properties. The applicability of Lipinski's Rule of Five was applied to evaluate oral drug-likeness.

    RESULTS: 8-Oxoerymelanthine (128) exhibited the highest binding affinity and remarkable stability in molecular dynamics simulations. The toxicity predictions indicated a low risk of mutagenicity, hepatotoxicity, and cardiotoxicity. Pharmacokinetic assessments indicated good absorption, moderate blood-brain barrier penetration, and favorable metabolic and excretion profiles, supporting its potential as an orally active drug candidate.

    CONCLUSION: 8-Oxoerythmelanthine (128) exhibits strong potential as an AChE inhibitor with a favorable balance of efficacy, safety, and pharmacokinetic properties. These results warrant further investigation in preclinical and clinical studies to validate its therapeutic potential and safety for Alzheimer's disease treatment.

  7. Murtihapsari M, Salam S, Kurnia D, Darwati D, Kadarusman K, Abdullah FF, et al.
    Nat Prod Res, 2021 Mar;35(6):937-944.
    PMID: 31210054 DOI: 10.1080/14786419.2019.1611815
    A new antimalarial sterol, kaimanol (1), along with a known sterol, saringosterol (2) was isolated from the Indonesian Marine sponge, Xestospongia sp. The chemical structure of the new compound was determined on the basis of spectroscopic evidences and by comparison to those related compounds previously reported. Isolated compounds, 1 and 2 were evaluated for their antiplasmodial effect against Plasmodium falciparum 3D7 strains. Compounds 1 and 2 exhibited antiplasmodial activity with IC50 values of 359 and 0.250 nM, respectively.
  8. Naini AA, Mayanti T, Harneti D, Darwati, Nurlelasari, Maharani R, et al.
    Phytochemistry, 2023 Jan;205:113477.
    PMID: 36283447 DOI: 10.1016/j.phytochem.2022.113477
    Two undescribed sesquiterpenoids, namely dysoticans A and B, and three undescribed sesquiterpenoid dimers, namely dysoticans C-E, together with six analogs, were isolated from the stem bark of Dysoxylum parasiticum (Osbeck) Kosterm. (Meliaceae), growing in West Java, Indonesia. Their structures were elucidated based on extensive spectroscopic analysis and theoretical simulations of ECD spectra and 13C NMR shifts. Dysoticans A and B possessed undescribed cadinanes with minor modifications, while C and D featured unprecedented pseudo-sesquiterpenoid dimers through O-ether linkages of cadinanes and guaianes, respectively. Dysotican E was also characterized as the true-sesquiterpenoid dimer featuring eudesmane-germacrene hybrid framework from the Meliaceae family. Furthermore, A-C and E showed moderate activities against the human breast cancer MCF-7 and cervical cancer HeLa cell lines with IC50 values ranging from 22.15 to 45.14 μM. D selectively exhibited significant cytotoxicity against the HeLa cell line with an IC50 value of 13.00 ± 0.13 μM.
  9. Nurlelasari, Parulian SS, Naini AA, Hilmayanti E, Farabi K, Harneti D, et al.
    J Asian Nat Prod Res, 2023;25(8):803-809.
    PMID: 36409205 DOI: 10.1080/10286020.2022.2143353
    Chisocarpene A (1) is a new tirucallane-type triterpenoid together with odoratone (2) and 24-methylenecycloartanol (3), isolated from the stem bark of Chisocheton lasiocarpus. The chemical structures of compounds 1-3 were elucidated through a detailed analysis of their spectroscopic data (IR, MS, 1 D, and 2 D NMR). The isolated compounds were evaluated for cytotoxic activity against the MCF-7 breast cancer cell line using a resazurin-based assay. Compound 1 showed the most potent activity (IC50 26.56 ± 1.01 µM) and was two-fold more active than the positive control.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links