A metamaterial-embedded planar inverted-F antenna (PIFA) is proposed in this study for cellular phone applications. A dual-band PIFA is designed to operate both GSM 900 MHz and DCS 1800 MHz. The ground plane of a conventional PIFA is modified using a planar one-dimensional metamaterial array. The investigation is performed using the Finite Integration Technique (FIT) of CST Microwave Studio. The performance of the developed antenna was measured in an anechoic chamber. The specific absorption rate (SAR) values are calculated considering two different holding positions: cheek and tilt. The SAR values are measured using COMOSAR measurement system. Good agreement is observed between the simulated and measured data. The results indicate that the proposed metamaterial-embedded antenna produces significantly lower SAR in the human head compared to the conventional PIFA. Moreover, the modified antenna substrate leads to slight improvement of the antenna performances.
A new design and analysis of a wide-band double-negative metamaterial, considering a frequency range of 0.5 to 7 GHz, is presented in this paper. Four different unit cells with varying design parameters are analyzed to evaluate the effects of the unit-cell size on the resonance frequencies of the metamaterial. Moreover, open and interconnected 2 × 2 array structures of unit cells are analyzed. The finite-difference time-domain (FDTD) method, based on the Computer Simulation Technology (CST) Microwave Studio, is utilized in the majority of this investigation. The experimental portion of the study was performed in a semi-anechoic chamber. Good agreement is observed between the simulated and measured S parameters of the developed unit cell and array. The designed unit cell exhibits negative permittivity and permeability simultaneously at S-band (2.95 GHz to 4.00 GHz) microwave frequencies. In addition, the designed unit cell can also operate as a double-negative medium throughout the C band (4.00 GHz to 4.95 GHz and 5.00 GHz to 5.57 GHz). At a number of other frequencies, it exhibits a single negative value. The two array configurations cause a slight shift in the resonance frequencies of the metamaterial and hence lead to a slight shift of the single- and double-negative frequency ranges of the metamaterial.
The aim of this paper is to investigate the effects of the distances between the human head and internal cellular device antenna on the specific absorption rate (SAR). This paper also analyzes the effects of inclination angles between user head and mobile terminal antenna on SAR values. The effects of the metal-glass casing of mobile phone on the SAR values were observed in the vicinity of the human head model. Moreover, the return losses were investigated in all cases to mark antenna performance. This analysis was performed by adopting finite-difference time-domain (FDTD) method on Computer Simulation Technology (CST) Microwave Studio. The results indicate that by increasing the distance between the user head and antenna, SAR values are decreased. But the increase in inclination angle does not reduce SAR values in all cases. Additionally, this investigation provides some useful indication for future design of low SAR mobile terminal antenna.
The COVID-19 outbreak has become a global health crisis affecting both the physical and mental health of people across the world. Likewise, the people of Bangladesh are going through a menacing mental health catastrophe with the outbreak of coronavirus that resulting in stress and trauma. Hence, this situation is altering people's lifestyles and generating complexities in psychological well-being. The study was based on the review of published articles and media reports related to stress and trauma during the COVID-19 pandemic in Bangladesh. A total of 10 peer-reviewed articles and 45 newspaper reports were included following an extensive literature search. The contents were searched on Google, Google Scholar, PubMed, local online newspapers, social networking sites, and different webpages and published articles in different journals on COVID-19 from March 5 to October 25, 2020. The review study finds that the mental health of people in Bangladesh has severely been affected by the outbreak of coronavirus. All of the government, voluntary, and civil organizations need to give further emphasis on psychosocial and bereavement counseling in order to support those experiencing mental shocks resulting from the COVID-19 crisis. There is the need to strengthen more consultative and collaborative efforts from all public health experts, social workers, psychologists, and policymakers in doing so. Social workers in this context will be able to make meaningful contributions in supporting those affected people to better adjust to the challenging situation.
This paper aimed to examine the role of faith-based organizations (FBOs) in the distribution of social assistance (SA) during the COVID-19 pandemic in Bangladesh. The paper adopts a qualitative case-study approach to explore the best practices in the distribution of SA by five (5) organizations including FBOs, governmental organizations (GOs), Non-governmental organizations (NGOs), political groups, and private voluntary groups. In this study, 14 beneficiaries of SA were selected by stratified proportionate random sampling method, and five (5) key personnel were selected purposively based on their experiences in the management of SA distribution. The study found that "no-move, no touch" approach followed by FBOs is more likely to establish human rights and social justice and reduce the transmission of diseases. In contrast to the modern idea, which undermines the faith-based charity, the study proved that faith-based charity is gaining attraction as an effective approach combating global pandemic. The findings of this paper will be useful for policymakers, voluntary service workers, GO, and NGO workers to ensure the distribution of SA in a more productive and disciplined way during and after an emergency like the COVID-19 pandemic.
Three 1-(2-hydroxyethyl)-3-alkylimidazolium chloride room temperature ionic liquids (ILs) [2OHimC(n)][Cl]; (n=0, 1, 4) have been synthesized from the appropriate imidazole precursors and characterized by IR and NMR spectroscopies and elemental analysis. Their anti-microbial activities were investigated using the well-diffusion method. The viabilities of Escherichia coli, Aeromonas hydrophila, Listeria monocytogenes and Salmonella enterica as a function of IL concentrations were studied. The minimal inhibitory concentrations (MICs) and EC₅₀ values for the present ILs were within the concentration range from 60 to 125 mM and 23 to 73 mM. The anti-microbial potencies of the present ILs were compared to a standard antibiotic, gentamicin. The finding affords additional perspective on the level of ILs toxicity to aquatic lifeforms and yet, this characteristic can be readily harnessed to detect microbial growth and activity.
We have investigated the thermoluminescent response and fading characteristics of germanium- and aluminium-doped SiO(2) optical fibres. These optical fibres were placed in a solid phantom and irradiated using 6 and 10 MV photon beams at doses ranging from 0.02 to 0.24 Gy delivered using a linear accelerator. In fading studies, the TL measurements were continued up to 14 days post-irradation. We have investigated the linearity of TL response as a function of dose for Ge-, Al-doped optical fibre and TLD-100 obtained for 6 and 10 MV photon irradiations. We have concentrated on doses that represent a small fraction of that delivered to the tumour to establish sensitivity of measurement for peripheral exposures in external beam radiotherapy.
This research examines a variety of restrictions preventing Bangladeshi youth, particularly Generation Z university students, from becoming involved in entrepreneurship. Moreover, the study examines the influence of Entrepreneurial Attitude (EA), Subjective Entrepreneurial Norms (SEN), Entrepreneurial Perceived Behavioural Control (EPBC), and Entrepreneurial Resilience (ER) on Entrepreneurial Intention (EI) of Bangladeshi Gen Z university students. A systematic literature review methodology following PRISMA procedure was performed to identify the relevant articles. A quantitative method with a positivism philosophy, cross-sectional time horizon and deductive approach was applied to the study. The data of 206 university students from the BBA department of ten universities were collected using convenience sampling and a self-administrated structured questionnaire survey. SPSS 26.0 and Smart PLS 3.0 were used to analyse the data. The output shows a positive and significant association amongst EA, SEN, EPBC, ER, and EI. Various constraints were identified from the literature and ranked based on the respondents' feedback. This research will help entrepreneurs, scholars, policymakers and practitioners to build the entrepreneurial ecosystem and develop young people's understanding of the entrepreneurial decision process and the importance of ER. This paper contributes through empirical investigation to an understanding of the actions that prevent Gen Z students from entrepreneurial activities; decisions are affected by socio-psychological constructions integrating ER with the Theory of Planned behaviour (TPB) model. Triple, Quadruple and Quintuple Helix models are considered supporting theories in this study to shed light on tackling the constraints. To the best knowledge of the researcher, integrating ER with TPB model's constructs is a pioneer scholarly contribution in the context of South-East Asian, specifically Bangladeshi Gen Z students.
Urban noise pollution poses significant challenges to public health and environmental sustainability, particularly in rapidly developing tourist destinations. Noise pollution and associated annoyance level in five major intersections of Cox's Bazar City, Bangladesh, was assessed in this study during the peak tourist season. Noise measurements were conducted using various indices (L10, Leq, and TNI) across morning, midday, and afternoon time slots. TNI scores were compared with Mean Dissatisfaction Score (MDS) standards to assess traffic-induced noise annoyance levels. Additionally, a survey of 675 respondents was conducted to assess their perceptions of noise pollution. Statistical analyses included linear regression for noise indices, multinomial logistic regression for TNI-related dissatisfaction, and ordinal logistic regression for respondents' perceived annoyances. Results revealed significant noise pollution issues, with Leq scores consistently exceeding national guidelines across all intersections and time periods, particularly on weekends during afternoon timeslots. TNI values frequently surpassed standard dissatisfaction regulations, with 19 out of 105 time slots exhibiting extreme dissatisfaction levels. Link Road and Kolatoli Circle intersections consistently showed higher noise levels and dissatisfaction. Over 95% of survey respondents perceived increased noise pollution during peak tourist seasons, with 87.11% describing it as "extremely" or "very" noisy. Longer exposure duration and awareness of health risks were significantly associated with reported perceived annoyance levels. Respondents reported various health impacts, including annoyance (84.44%), headaches (62.37%), and cognitive impairment (44.44%). This comprehensive study provides valuable insights for policymakers, city planners, and environmentalists to develop sustainable urban strategies that balance the acoustic environment with the well-being of residents and tourists alike.
We report on the potential application of crystalline thin metal oxide films (TiOx, SnOx) with varying stoichiometries in perovskite solar cell devices. The oxides were deposited via reactive e-beam evaporation, involving the sublimation of pure metals under different pressures of pure oxygen, followed by thermal annealing at 200 °C. Variable angle spectroscopic ellipsometry, X-ray diffraction (XRD), contact angle measurements, scanning electron microscopy (SEM), and energy-dispersive X-ray spectroscopy (EDS) were used to characterize the films. XRD findings confirmed the crystalline phases of SnOx thin films treated at 200 °C for the most oxygen-rich films (deposited at 2e-4 Torr), while TiOx layers exhibited an amorphous phase. FESEM results confirmed that uniform and dense films were generated across the entire substrate surface. Using the measured refractive indices in a computational model, it was demonstrated that optimizing the device design with these films could result in power conversion efficiencies surpassing 25%.
Extensive research on fault diagnosis is essential to detect various faults that occur to different photovoltaic (PV) panels to keep PV systems operating at peak performance. Here, we present an impact analysis of potential induced degradation (PID) on the current-voltage (I-V) characteristics of crystalline silicon (c-Si) solar cells. The impact of parasitic resistances on solar cell performance is highlighted and linked to fault and degradation. Furthermore, a Simulink model for a single solar cell is proposed and used to estimate the I-V characteristics of a PID-affected PV cell based on experimental results attributes. The measured data show that the fill factor (FF) drops by approximately 13.7% from its initial value due to a decrease in shunt resistance (Rsh). Similarly, the simulation results find that the fill factor degraded by approximately 12% from its initial value. The slight increase in measured data could be due to series resistance effects which were assumed to be zero in the simulated data. This study links simulation and experimental work to confirm the I-V curve behavior of PID-affected PV cells, which could help to improve fault diagnosis methods.
Fusarium wilt disease incited by Fusarium oxysporum f. sp. niveum (FON) is the utmost devastating soil-inhabiting fungal pathogen limiting watermelon (Citrullus lanatus) production in Malaysia and globally. The field disease survey of fusarium wilt was carried out during December 2019 and November 2020, in three major production areas (3 farmer fields per location) in Peninsular Malaysia namely, Mersing, Serdang and Kuantan and disease incidence of 30 and 45%, was recorded for each year, respectively. Infected watermelon plants showed symptoms such as vascular discoloration, brown necrotic lesions to the soil line or the crown, one-sided wilt of a plant, or a runner or the whole plant. Infected root and stem tissues, 1-2 cm pieces were surface sterilized with 0.6% NaOCl for 1 minute followed by double washing with sterile water. The disinfected tissues were air-dried and transferred onto semi-selective Komada's medium (Komada 1975) and incubated for 5 days. The fungal colonies produced were placed on potato dextrose agar (PDA) to attain a pure culture and incubated at 25±2℃ for 15 days. The pure fungal colony was flat, round and light purple in color. Macroconidia were straight to slightly curved, 18.56-42.22 µm in length, 2.69-4.08 µm width, predominantly 3 septate and formed in sporodochia. Microconidia measured 6.16-10.86 µm in length and 2.49-3.83 µm in width, kidney-shaped, aseptate and were formed on short monophialides in false-heads. Chlamydospores were single or in pairs with smooth or rough walls, found both terminally or intercalary. To confirm their pathogenicity, two-week-old watermelon seedlings (cv. NEW BEAUTY) were dipped into spore suspension (1 ˟ 106 spores/ml) of representative isolates of JO20 (Mersing), UPM4 (Serdang) and KU41 (Kuantan) for 30 second and then moved into 10 cm diameter plastic pots containing 300 g sterilized soil mix. Disease symptoms were assessed weekly for one month. Control seedlings were immersed in sterile distilled water before transplanting. The inoculated seedlings showed typical Fusarium wilt symptoms like yellowing, stunted growth, and wilting, which is similar to the farmer field infected plants. However, the seedlings inoculated by sterile distilled water remained asymptomatic. The pathogen was successfully re-isolated from the infected seedlings onto Komada's medium, fulfilling the Koch's postulate. For the PCR amplification, primers EF-1 and EF-2 were used to amplify the tef1-α region. A Blastn analysis of the tef1-α sequences of the isolates JO20 (accession nos. MW315902), UPM4 (MW839560) and KU41 (MW839562) showed 100% similarity; with e-value of zero, to the reference sequences of F. oxysporum isolate FJAT-31690 (MN507110) and F. oxysporum f. sp. niveum isolate FON2 790-2 (MN057702). In Fusarium MLST database, isolates JO20, UPM4 and KU41 revealed 100% identity with the reference isolate of NRRL 22518 (accession no. FJ985265). Though isolate FJ985265 belongs to the f. sp. melonis, earlier findings had revealed Fusarium oxysporum f. sp. are naturally polyphyletic and making clusters with diverse groups of the Fusarium oxysporum species complex (O'Donnell et al. 2015). The isolates JO20, UPM4 and KU41 were identified as F. oxysporum f. sp. niveum based on the aligned sequences of tef1-α and molecular phylogenetic exploration by the maximum likelihood method. To the best of our knowledge, this is the first report of F. oxysporum f. sp. niveum as a causative pathogen of Fusarium wilt disease of watermelon in Malaysia. Malaysia enables to export watermelon all-year-round in different countries like Singapore, Hong-Kong, The United Arab Emirates (UAE), and Netherlands. The outburst of this destructive soil-borne fungal pathogen could cause hindrance to watermelon cultivation in Malaysia. Thus, growers need to choice multiple management tactics such as resistant varieties, cultural practices (soil amendments and solarization), grafting, cover crops and fungicide application to control this new pathogen.
Watermelon (Citrullus lanatus) accounts for almost 13% of all tropical fresh fruit production in Malaysia. They are grown, mostly in Johor, Kedah, Kelantan, Pahang, and Terengganu areas of Malaysia on 10,406 ha and yielding 172,722 Mt. In 2019, a new fruit rot disease was observed in two major production areas in Peninsular Malaysia. Disease symptoms included water-soaked brown lesions on the fruit surface in contact with the soil. The lesions enlarged gradually and ultimately covered the whole fruit with white mycelium leading to internal fruit decay. Disease surveys were conducted in December 2019 and November 2020 in fields at Kuantan, Pahang and Serdang, Selangor. Disease incidence was 10% in 2019 and 15% in 2020. Infected fruits were collected and washed under running tap water to wash off adhering soil and debris. Fruit tissue sections 1 to 2 cm in length were surface sanitized with 0.6% sodium hypochlorite (NaOCl) for 3 min. and washed twice with sterile distilled water. The disinfected air-dried tissues were then transferred onto potato dextrose agar (PDA) media and incubated at 25±2℃ for 3 days. Fungal colonies with whitish mycelium and pink pigment isolated using single spore culture. The pure cultures were placed onto carnation leaf agar (CLA), and the culture plates were incubated at 25±2℃ for 15 days for morphological characterization. On CLA, macroconidia were produced from monophialides on branched conidiophores in orange sporodochia. Macroconindia were thick-walled, strong dorsiventral curvature, 5 to 7 septate with a tapered whip-liked pointed apical cell and characteristic foot-shaped basal cell, 21.9 to 50.98 μm long and 2.3 to 3.60 μm wide. Typical verrucose thick chlamydospores with rough walls were profuse in chains or clumps, sub-globose or ellipsoidal. Based on morphological characteristics they were identified as Fusarium equiseti (Leslie and Summerell 2006). Molecular identification of both U4-1 and N9-1 pure culture isolates were carried out using two primer pair sets; internal transcribed spacer (ITS) ITS-1/ ITS-4 and translation elongation factor 1 alpha (TEF1-α) (EF-1/EF-2). A Blastn analysis of the ITS gene sequence of U4-1(MW362286) and N9-1 (MW362287) showed >99% similarity index to the reference gene sequence of F. equiseti isolate 19MSr-B3-4 (LC514690). The TEF1-α sequences of U4-1 (accession no. MW839563) and N9-1 (accession no. MW839564) showed 100% identity; with an e-value of zero, to the reference gene sequence of F. equiseti isolate URM: 7561 (accession no. LS398490). Each isolate also had a >99% identity with isolate NRRL 34070 (accession no. GQ505642) in Fusarium MLST database that belongs to the F. incarnatum-equiseti species complex (O'Donnell et al. 2015). Based on phylogenetic analysis of the aligned sequences (TEF1-α) by the maximum likelihood method, the U4-1 and N9-1 isolates were confirmed to be F. equiseti as was reported in Georgia, USA (Li and Ji 2015) and in Harbin, Heilongjiang Province, China (Li et al. 2018). Finally, the two pure culture isolates of U4-1 and N9-1 were used to fulfill Koch's postulates. Stab inoculations of five healthy watermelon fruits (cv. 345-F1 hybrid seedless round watermelon) were performed with a microconidial suspension of individual isolates (4x106 spores/mL). Five control fruits were stabbed with double distilled water. The inoculated fruits were incubated under 95% relative humidity at a temperature of 25±2℃ for 48 h followed by additional incubation inside an incubator at 25±2℃ for 8 days. Ten days post-inoculation, the control fruits showed no disease symptoms. However, inoculated fruits exhibited typical symptoms of fruit rot disease like water-soaked brown lesions, white mycelium on the fruit surface and internal fruit decay, which is similar to the farmer's field infected fruits. The suspected pathogen was successfully re-isolated from the symptomatic portion of inoculated fruit and morphologically identified for verification. To our knowledge, this is the first report of F. equiseti causing fruit rot of watermelon in Malaysia. Malaysia exports watermelon year-round to many countries around the world. The outbreak of this new fruit rot disease could potentially pose a concern to watermelon cultivation in Malaysia.
Colletotrichum falcatum Went causes red rot disease in sugarcane farming in the tropical and sub-tropical regions. This disease causes significant economic loss to the sugarcane production industry. Successful disease management strategies depend on understanding the evolutionary relationship between pathogens, genetic diversity, and population structure, particularly at the intra-specific level. Forty-one isolates of C. falcatum were collected from different sugarcane farms across Bangladesh for molecular identification, phylogeny and genetic diversity study. The four genes namely, ITS-rDNA, β-tubulin, Actin and GAPDH sequences were conducted. All the 41 C. falcatum isolates showed a 99-100% similarity index to the conserved gene sequences in the GenBank database. The phylogram of the four genes revealed that C. falcatum isolates of Bangladesh clustered in the same clade and no distinct geographical structuring were evident within the clade. The four gene sequences revealed that C. falcatum isolates from Bangladesh differed from other countries´ isolates because of nucleotides substitution at different loci. The genetic structure of C. falcatum isolates were determined using ISSR marker generated 404 polymorphic loci from 10 selected markers. The percentage of polymorphic loci was 99.01. The genetic variability at species level was slightly higher than at population level. Total mean gene diversity at the species level was 0.1732 whereas at population level it was 0.1521. The cluster analysis divided 41 isolates into four main genetic groups and the principal component analysis was consistent with cluster analysis. To the best of our knowledge, this is the first finding on characterizing C. falcatum isolates infesting sugarcane in Bangladesh. The results of this present study provide important baseline information vis a vis C. falcatum phylogeny analysis and genetic diversity study.
Approximately 15-18% of crops losses occur as a result of animal pests, while weeds and microbial diseases cause 34 and 16% losses, respectively. Fungal pathogens cause about 70-80% losses in yield. The present strategies for plant disease control depend transcendently on agrochemicals that cause negative effects on the environment and humans. Nanotechnology can help by reducing the negative impact of the fungicides, such as enhancing the solubility of low water-soluble fungicides, increasing the shelf-life, and reducing toxicity, in a sustainable and eco-friendly manner. Despite many advantages of the utilization of nanoparticles, very few nanoparticle-based products have so far been produced in commercial quantities for agricultural purposes. The shortage of commercial uses may be associated with many factors, for example, a lack of pest crop host systems usage and the insufficient number of field trials. In some areas, nanotechnology has been advanced, and the best way to be in touch with the advances in nanotechnology in agriculture is to understand the major aspect of the research and to address the scientific gaps in order to facilitate the development which can provide a rationale of different nanoproducts in commercial quantity. In this review, we, therefore, described the properties and synthesis of nanoparticles, their utilization for plant pathogenic fungal disease control (either in the form of (a) nanoparticles alone, that act as a protectant or (b) in the form of a nanocarrier for different fungicides), nano-formulations of agro-nanofungicides, Zataria multiflora, and ginger essential oils to control plant pathogenic fungi, as well as the biosafety and limitations of the nanoparticles applications.
Many different herbal extracts have historically been utilized to treat microbe-induced infections, injuries, cancer, thrombosis, and arthritis. The purpose of this study was to determine the antibacterial, cytotoxic, in vitro thrombolytic, and in vitro antiarthritic properties of ethanolic extracts of stem and seed of Bari orchid 1 (BO) plant. This orchid plant was developed by the Bangladesh Agriculture Research Institute (BARI) in Gazipur. Fourteen microbes were employed in the antimicrobial investigation, and samples of orchids were compared to ciprofloxacin as a reference. The BO/seed extract was found to possess more antibacterial activity. The lethality test of brine shrimps was used to assess the LC50 values. The BO/stem extract exhibited a higher cytotoxicity potential, in comparison to the BO/seed extract. Two concentrations (1000 and 100 ppm) and two incubation times (24 hours and 1.5 hours) were used to assess the thrombolytic activity of the extracts. Regarding the thrombolytic effect, the BO/stem extract has demonstrated greater promise. Furthermore, the herbal extract's antiarthritic activity was investigated at four different concentrations, and the results were evaluated in comparison with those of diclofenac sodium. When comparing BO/stem extract to other extracts, the greatest values for protein denaturation were obtained.
The photovoltaic performance of perovskite solar cells (PSCs) can be improved by utilizing efficient front contact. However, it has always been a significant challenge for fabricating high-quality, scalable, controllable, and cost-effective front contact. This study proposes a realistic multi-layer front contact design to realize efficient single-junction PSCs and perovskite/perovskite tandem solar cells (TSCs). As a critical part of the front contact, we prepared a highly compact titanium oxide (TiO2) film by industrially viable Spray Pyrolysis Deposition (SPD), which acts as a potential electron transport layer (ETL) for the fabrication of PSCs. Optimization and reproducibility of the TiO2 ETL were discreetly investigated while fabricating a set of planar PSCs. As the front contact has a significant influence on the optoelectronic properties of PSCs, hence, we investigated the optics and electrical effects of PSCs by three-dimensional (3D) finite-difference time-domain (FDTD) and finite element method (FEM) rigorous simulations. The investigation allows us to compare experimental results with the outcome from simulations. Furthermore, an optimized single-junction PSC is designed to enhance the energy conversion efficiency (ECE) by > 30% compared to the planar reference PSC. Finally, the study has been progressed to the realization of all-perovskite TSC that can reach the ECE, exceeding 30%. Detailed guidance for the completion of high-performance PSCs is provided.
AIM AND OBJECTIVE: Due to the a lot of unexplored proteins in HIV-1, this research aimed to explore the functional roles of a hypothetical protein (AAB33144.1) that might play a key role in HIV-1 pathogenicity.
METHODS: The homologous protein was identified along with building and validating the 3D structure by searching several bioinformatics tools.
RESULTS: Retroviral aspartyl protease and retropepsin like functional domains and motifs, folding pattern (cupredoxins), and subcellular localization in cytoplasmic membrane were determined as biological activity. Besides, the functional annotation revealed that the chosen hypothetical protein possessed protease-like activity. To validate our generated protein 3D structure, molecular docking was performed with five compounds where nelfinavir showed (-8.2 kcal/mol) best binding affinity against HXB2 viral protease (PDB ID: 7SJX) and main protease (PDB ID: 4EYR) protein.
CONCLUSIONS: This study suggests that the annotated hypothetical protein related to protease action, which may be useful in viral genetics and drug discovery.
This study delves into enhancing the efficiency and stability of perovskite solar cells (PSCs) by optimizing the surface morphologies and optoelectronic properties of the electron transport layer (ETL) using tungsten (W) doping in zinc oxide (ZnO). Through a unique green synthesis process and spin-coating technique, W-doped ZnO films were prepared, exhibiting improved electrical conductivity and reduced interface defects between the ETL and perovskite layers, thus facilitating efficient electron transfer at the interface. High-quality PSCs with superior ETL demonstrated a substantial 30% increase in power conversion efficiency (PCE) compared to those employing pristine ZnO ETL. These solar cells retained over 70% of their initial PCE after 4000 h of moisture exposure, surpassing reference PSCs by 50% PCE over this period. Advanced numerical multiphysics solvers, employing finite-difference time-domain (FDTD) and finite element method (FEM) techniques, were utilized to elucidate the underlying optoelectrical characteristics of the PSCs, with simulated results corroborating experimental findings. The study concludes with a thorough discussion on charge transport and recombination mechanisms, providing insights into the enhanced performance and stability achieved through W-doped ZnO ETL optimization.