Displaying all 14 publications

Abstract:
Sort:
  1. Ahmed, Y., Rahman, S., Akhtar, P., Islam, F., Rahman, M., Yaakob, Z.
    MyJurnal
    General phytochemical screening of the leaves of Saurauia roxburghii (Actinidiaceae) revealed the presence of alkaloids, flavonoids, glycosides, O-glycosides, terpenoids, carbohydrates, steroids, reducing sugar, tannins, phlobatannins and saponin are present in this plant whereas cardiac glycosides are absent. Two steroid compounds were isolated from the n-hexane extract of the leaves from S. roxburghii. Based on the spectral evidence IR, 1H-NMR and 13C-NMR, structures were determined to be stigmasterol (1) and β-sitosterol (2) This is the first report so far of occurrence and details spectroscopic description of these compounds from S. roxburghii.
  2. Aw Yong PY, Islam F, Harith HH, Israf DA, Tan JW, Tham CL
    Front Pharmacol, 2020;11:599080.
    PMID: 33574752 DOI: 10.3389/fphar.2020.599080
    Honey has been conventionally consumed as food. However, its therapeutic properties have also gained much attention due to its application as a traditional medicine. Therapeutic properties of honey such as anti-microbial, anti-inflammatory, anti-cancer and wound healing have been widely reported. A number of interesting studies have reported the potential use of honey in the management of allergic diseases. Allergic diseases including anaphylaxis, asthma and atopic dermatitis (AD) are threatening around 20% of the world population. Although allergic reactions are somehow controllable with different drugs such as antihistamines, corticosteroids and mast cell stabilizers, modern dietary changes linked with allergic diseases have prompted studies to assess the preventive and therapeutic merits of dietary nutrients including honey. Many scientific evidences have shown that honey is able to relieve the pathological status and regulate the recruitment of inflammatory cells in cellular and animal models of allergic diseases. Clinically, a few studies demonstrated alleviation of allergic symptoms in patients after application or consumption of honey. Therefore, the objective of this mini review is to discuss the effectiveness of honey as a treatment or preventive approach for various allergic diseases. This mini review will provide insights into the potential use of honey in the management of allergic diseases in clinical settings.
  3. Liew KY, Kamise NI, Ong HM, Aw Yong PY, Islam F, Tan JW, et al.
    Front Pharmacol, 2021;12:785371.
    PMID: 35126124 DOI: 10.3389/fphar.2021.785371
    Allergic diseases are a global health burden with increasing prevalence. Side effects of available medications (antihistamines and steroids), lack of patients' perceived effectiveness and high cost of biologic therapies (omalizumab) are challenges to the clinical management of allergic diseases. As allergy symptoms persist for a long time, complementary and alternative medicine (CAM) such as propolis may be considered a potential prophylactic or therapeutic option to avoid long-term medication use. Propolis is a natural resinous substance produced by bees. Although propolis is well known to possess antioxidant, antimicrobial, and anticancer properties, its anti-allergic potential is not fully explored. Several preclinical studies demonstrated the therapeutic effects of propolis extracts against allergic inflammation, asthma, allergic rhinitis, atopic dermatitis, and food allergy, which may be partly attributed to their inhibitory effects on the activation of mast cells and basophils. Clinically, the consumption of propolis as a supplement or an adjunct therapy is safe and attenuates various pathological conditions in asthma. Such an approach may be adopted for atopic dermatitis and allergic rhinitis. Although flavonoids (chrysin, kaempferol, galangin, and pinocembrin) and cinnamic acid derivatives (artepillin C and caffeic acid phenethyl ester) can contribute to the anti-allergic activities, they may not be present in all propolis samples due to variations in the chemical composition. Future studies should relate the anti-allergic activity of propolis with its chemical contents. This mini-review summarizes and discusses existing preclinical and clinical studies reporting the anti-allergic activities of propolis to provide insights into its potential applications in allergic diseases.
  4. Rabby MII, Uddin MW, Sheikh MR, Bhuiyan HK, Mumu TA, Islam F, et al.
    F1000Res, 2023;12:38.
    PMID: 37484517 DOI: 10.12688/f1000research.126890.2
    A systematic literature review was conducted to summarize the overall thermal performance of different gasified cooking stoves from the available literature. For this purpose, available studies from the last 14 years (2008 to 2022) were searched using different search strings. After screening, a total of 28 articles were selected for this literature review. Scopus, Google Scholar, and Web of Science databases were used as search strings by applying "Gasifier cooking stove" AND "producer gas cooking stove" AND "thermal performance" keywords. This review uncovers different gasified cooking stoves, cooking fuels, and fabrication materials besides overall thermal performances. The result shows that the overall thermal performance of different gasified cooking stoves was 5.88% to 91% depending on the design and burning fuels. The premixed producer gas burner with a swirl vane stove provided the highest overall thermal performance range, which was 84% to 91%, and the updraft gasified stove provided the lowest performance, which was 5.88% to 8.79%. The result also demonstrates that the wood pellets cooking fuel provided the highest thermal performance and corn straw briquette fuel provided the lowest for gasified cooking stoves. The overall thermal performance of wood pellets was 38.5% and corn straw briquette was 10.86%.
  5. Cheung N, Lim L, Wang JJ, Islam FM, Mitchell P, Saw SM, et al.
    Am J Ophthalmol, 2008 Oct;146(4):620-4.
    PMID: 18639861 DOI: 10.1016/j.ajo.2008.05.033
    To examine the prevalence and risk factors of retinal arteriolar emboli, a risk predictor of stroke, in an Asian population.
  6. Yong PYA, Yip AJW, Islam F, Hong HJ, Teh YE, Tham CL, et al.
    BMC Complement Med Ther, 2023 Sep 04;23(1):307.
    PMID: 37667314 DOI: 10.1186/s12906-023-04129-y
    BACKGROUND: Allergy is an inflammatory disorder affecting around 20% of the global population. The adverse effects of current conventional treatments give rise to the increased popularity of using natural food products as complementary and alternative medicine against allergic diseases. Stingless bee honey, commonly known as Kelulut honey (KH) in Malaysia, has been used locally as a traditional remedy to relieve cough and asthma. This study evaluated the anti-allergic potential of KH collected from four different botanical sources on phorbol ester 12-myristate-3-acetate and calcium ionophore-activated human mast cells.

    METHODS: The present study examined the inhibitory effects of all collected honey on the release of selected inflammatory mediators, such as tumor necrosis factor-α (TNF-α), interleukin (IL)-4, IL-6, IL-8, histamine, and β-hexosaminidase in an activated HMC. Besides that, all honey's total phenolic content (TPC) was also examined, followed by using liquid chromatography with tandem mass spectrometry (LC-MS/MS) to identify the phytochemicals in the honey. Further examination of the identified phytochemicals on their potential interaction with selected signaling molecules in an activated mast cell was conducted using computational methods.

    RESULTS: The results indicated that there were significant inhibitory effects on all selected inflammatory mediators' release by KH sourced from bamboo (BH) and rubber tree (RH) at 0.5% and 1%, but not KH sourced from mango (AH) and noni (EH). BH and RH were found to have higher TPC values and were rich in their phytochemical profiles based on the LC-MS/MS results. Computational studies were employed to determine the possible molecular target of KH through molecular docking using HADDOCK and PRODIGY web servers.

    CONCLUSIONS: In short, the results indicated that KH possesses anti-allergic effects towards an activated HMC, possibly by targeting downstream MAPKs. However, their anti-allergic effects may vary according to their botanical sources. Nevertheless, the present study has provided insight into the potential application of stingless bee honey as a complementary and alternative medicine to treat various allergic diseases.

  7. Jadhav PB, Jadhav SB, Zehravi M, Mubarak MS, Islam F, Jeandet P, et al.
    Molecules, 2022 Dec 24;28(1).
    PMID: 36615348 DOI: 10.3390/molecules28010149
    Dipeptidyl peptidase-4 (DPP-IV) inhibitors are known as safe and well-tolerated antidiabetic medicine. Therefore, the aim of the present work was to synthesize some carbohydrazide derivatives (1a-5d) as DPP-IV inhibitors. In addition, this work involves simulations using molecular docking, ADMET analysis, and Lipinski and Veber's guidelines. Wet-lab synthesis was used to make derivatives that met all requirements, and then FTIR, NMR, and mass spectrometry were used to confirm the structures and perform biological assays. In this context, in vitro enzymatic and in vivo antidiabetic activity evaluations were carried out. None of the molecules had broken the majority of the drug-likeness rules. Furthermore, these molecules were put through additional screening using molecular docking. In molecular docking experiments (PDB ID: 2P8S), many molecules displayed more potent interactions than native ligands, exhibiting more hydrogen bonds, especially those with chloro- or fluoro substitutions. Our findings indicated that compounds 5b and 4c have IC50 values of 28.13 and 34.94 µM, respectively, under in vitro enzymatic assays. On the 21st day of administration to animals, compound 5b exhibited a significant reduction in serum blood glucose level (157.33 ± 5.75 mg/dL) compared with the diabetic control (Sitagliptin), which showed 280.00 ± 13.29 mg/dL. The antihyperglycemic activity showed that the synthesized compounds have good hypoglycemic potential in fasting blood glucose in the type 2 diabetes animal model (T2DM). Taken all together, our findings indicate that the synthesized compounds exhibit excellent hypoglycemic potential and could be used as leads in developing novel antidiabetic agents.
  8. Islam F, Bepary S, Nafady MH, Islam MR, Emran TB, Sultana S, et al.
    Oxid Med Cell Longev, 2022;2022:8741787.
    PMID: 36046682 DOI: 10.1155/2022/8741787
    A spinal cord injury (SCI) occurs when the spinal cord is deteriorated or traumatized, leading to motor and sensory functions lost even totally or partially. An imbalance within the generation of reactive oxygen species and antioxidant defense levels results in oxidative stress (OS) and neuroinflammation. After SCI, OS and occurring pathways of inflammations are significant strenuous drivers of cross-linked dysregulated pathways. It emphasizes the significance of multitarget therapy in combating SCI consequences. Polyphenols, which are secondary metabolites originating from plants, have the promise to be used as alternative therapeutic agents to treat SCI. Secondary metabolites have activity on neuroinflammatory, neuronal OS, and extrinsic axonal dysregulated pathways during the early stages of SCI. Experimental and clinical investigations have noted the possible importance of phenolic compounds as important phytochemicals in moderating upstream dysregulated OS/inflammatory signaling mediators and axonal regeneration's extrinsic pathways after the SCI probable significance of phenolic compounds as important phytochemicals in mediating upstream dysregulated OS/inflammatory signaling mediators. Furthermore, combining polyphenols could be a way to lessen the effects of SCI.
  9. Chopra H, Bibi S, Singh I, Hasan MM, Khan MS, Yousafi Q, et al.
    Front Bioeng Biotechnol, 2022;10:874742.
    PMID: 35464722 DOI: 10.3389/fbioe.2022.874742
    Current advancements in nanotechnology and nanoscience have resulted in new nanomaterials, which may pose health and environmental risks. Furthermore, several researchers are working to optimize ecologically friendly procedures for creating metal and metal oxide nanoparticles. The primary goal is to decrease the adverse effects of synthetic processes, their accompanying chemicals, and the resulting complexes. Utilizing various biomaterials for nanoparticle preparation is a beneficial approach in green nanotechnology. Furthermore, using the biological qualities of nature through a variety of activities is an excellent way to achieve this goal. Algae, plants, bacteria, and fungus have been employed to make energy-efficient, low-cost, and nontoxic metallic nanoparticles in the last few decades. Despite the environmental advantages of using green chemistry-based biological synthesis over traditional methods as discussed in this article, there are some unresolved issues such as particle size and shape consistency, reproducibility of the synthesis process, and understanding of the mechanisms involved in producing metallic nanoparticles via biological entities. Consequently, there is a need for further research to analyze and comprehend the real biological synthesis-dependent processes. This is currently an untapped hot research topic that required more investment to properly leverage the green manufacturing of metallic nanoparticles through living entities. The review covers such green methods of synthesizing nanoparticles and their utilization in the scientific world.
  10. Younas K, Afzaal M, Saeed F, Shankar A, Kumar Bishoyi A, Khare N, et al.
    J Sci Food Agric, 2024 Oct 30.
    PMID: 39474642 DOI: 10.1002/jsfa.13953
    Each year, approximately million tons of waste is generated from eggshells disposed of in landfills. This waste is challenging to manage because of the odor and microbiological development. However, eggshells have potential applications as a solid byproduct. They can be modified and used in various industries such as metal, polymer and ceramic composites, in the production of biodiesel, heavy metal absorption from wastewater, and even as a biomaterial to substitute bone tissues. Furthermore, eggshells can be used as a cheap adsorbent for the treatment of contaminated waterways. They are also a great source of calcium and fertilizer for plants, animals and humans. Chicken eggshells can even be used as a catalyst for converting waste frying oil into biofuel. This review highlights the challenges and opportunities of eggshell waste valorization in the food industry. © 2024 Society of Chemical Industry.
  11. Mitra S, Muni M, Shawon NJ, Das R, Emran TB, Sharma R, et al.
    Oxid Med Cell Longev, 2022;2022:7252882.
    PMID: 36035218 DOI: 10.1155/2022/7252882
    Tacrine is a drug used in the treatment of Alzheimer's disease as a cognitive enhancer and inhibitor of the enzyme acetylcholinesterase (AChE). However, its clinical application has been restricted due to its poor therapeutic efficacy and high prevalence of detrimental effects. An attempt was made to understand the molecular mechanisms that underlie tacrine and its analogues influence over neurotherapeutic activity by focusing on modulation of neurogenesis, neuroinflammation, endoplasmic reticulum stress, apoptosis, and regulatory role in gene and protein expression, energy metabolism, Ca2+ homeostasis modulation, and osmotic regulation. Regardless of this, analogues of tacrine are considered as a model inhibitor of cholinesterase in the therapy of Alzheimer's disease. The variety both in structural make-up and biological functions of these substances is the main appeal for researchers' interest in them. A new paradigm for treating neurological diseases is presented in this review, which includes treatment strategies for Alzheimer's disease, as well as other neurological disorders like Parkinson's disease and the synthesis and biological properties of newly identified versatile tacrine analogues and hybrids. We have also shown that these analogues may have therapeutic promise in the treatment of neurological diseases in a variety of experimental systems.
  12. Vawhal PK, Jadhav SB, Kaushik S, Panigrahi KC, Nayak C, Urmee H, et al.
    Molecules, 2023 Jan 19;28(3).
    PMID: 36770672 DOI: 10.3390/molecules28031004
    Recent research on dipeptidyl peptidase-IV (DPP-IV) inhibitors has made it feasible to treat type 2 diabetes mellitus (T2DM) with minimal side effects. Therefore, in the present investigation, we aimed to discover and develop some coumarin-based sulphonamides as potential DPP-IV inhibitors in light of the fact that molecular hybridization of many bioactive pharmacophores frequently results in synergistic activity. Each of the proposed derivatives was subjected to an in silico virtual screening, and those that met all of the criteria and had a higher binding affinity with the DPP-IV enzyme were then subjected to wet lab synthesis, followed by an in vitro biological evaluation. The results of the pre-ADME and pre-tox predictions indicated that compounds 6e, 6f, 6h, and 6m to 6q were inferior and violated the most drug-like criteria. It was observed that 6a, 6b, 6c, 6d, 6i, 6j, 6r, 6s, and 6t displayed less binding free energy (PDB ID: 5Y7H) than the reference inhibitor and demonstrated drug-likeness properties, hence being selected for wet lab synthesis and the structures being confirmed by spectral analysis. In the in vitro enzyme assay, the standard drug Sitagliptin had an IC50 of 0.018 µM in the experiment which is the most potent. All the tested compounds also displayed significant inhibition of the DPP-IV enzyme, but 6i and 6j demonstrated 10.98 and 10.14 µM IC50 values, respectively, i.e., the most potent among the synthesized compounds. Based on our findings, we concluded that coumarin-based sulphonamide derivatives have significant DPP-IV binding ability and exhibit optimal enzyme inhibition in an in vitro enzyme assay.
  13. Gandla K, Islam F, Zehravi M, Karunakaran A, Sharma I, Haque MA, et al.
    Heliyon, 2023 Sep;9(9):e19454.
    PMID: 37662819 DOI: 10.1016/j.heliyon.2023.e19454
    P-glycoprotein (P-gp) is known as the "multidrug resistance protein" because it contributes to tumor resistance to several different classes of anticancer drugs. The effectiveness of such polymers in treating cancer and delivering drugs has been shown in a wide range of in vitro and in vivo experiments. The primary objective of the present study was to investigate the inhibitory effects of several naturally occurring polymers on P-gp efflux, as it is known that P-gp inhibition can impede the elimination of medications. The objective of our study is to identify polymers that possess the potential to inhibit P-gp, a protein involved in drug resistance, with the aim of enhancing the effectiveness of anticancer drug formulations. The ADMET profile of all the selected polymers (Agarose, Alginate, Carrageenan, Cyclodextrin, Dextran, Hyaluronic acid, and Polysialic acid) has been studied, and binding affinities were investigated through a computational approach using the recently released crystal structure of P-gp with PDB ID: 7O9W. The advanced computational study was also done with the help of molecular dynamics simulation. The aim of the present study is to overcome MDR resulting from the activity of P-gp by using such polymers that can inhibit P-gp when used in formulations. The docking scores of native ligand, Agarose, Alginate, Carrageenan, Chitosan, Cyclodextrin, Dextran, Hyaluronic acid, and Polysialic acid were found to be -10.7, -8.5, -6.6, -8.7, -8.6, -24.5, -6.7, -8.3, and -7.9, respectively. It was observed that, Cyclodextrin possess multiple properties in drug delivery science and here also demonstrated excellent binding affinity. We propose that drug efflux-related MDR may be prevented by the use of Agarose, Carregeenan, Chitosan, Cyclodextrin, Hyaluronic acid, and/or Polysialic acid in the administration of anticancer drugs.
  14. Islam F, Bibi S, Meem AFK, Islam MM, Rahaman MS, Bepary S, et al.
    Int J Mol Sci, 2021 Nov 23;22(23).
    PMID: 34884440 DOI: 10.3390/ijms222312638
    Several coronaviruses (CoVs) have been associated with serious health hazards in recent decades, resulting in the deaths of thousands around the globe. The recent coronavirus pandemic has emphasized the importance of discovering novel and effective antiviral medicines as quickly as possible to prevent more loss of human lives. Positive-sense RNA viruses with group spikes protruding from their surfaces and an abnormally large RNA genome enclose CoVs. CoVs have already been related to a range of respiratory infectious diseases possibly fatal to humans, such as MERS, SARS, and the current COVID-19 outbreak. As a result, effective prevention, treatment, and medications against human coronavirus (HCoV) is urgently needed. In recent years, many natural substances have been discovered with a variety of biological significance, including antiviral properties. Throughout this work, we reviewed a wide range of natural substances that interrupt the life cycles for MERS and SARS, as well as their potential application in the treatment of COVID-19.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links