Displaying all 18 publications

Abstract:
Sort:
  1. Jafarzadeh S, Jafari SM
    Crit Rev Food Sci Nutr, 2021;61(16):2640-2658.
    PMID: 32631073 DOI: 10.1080/10408398.2020.1783200
    New food packaging materials provide an attractive option for the advancement of nanomaterials. The poor thermal, mechanical, chemical, and physical properties of biopolymers and their inherent permeability to gases and vapor have increased this interest. Polymeric materials (matrix) in modern technologies require a filler, which can react/interact with the available matrix to provide a new formulation with improved packaging properties including oxygen permeability, moisture permeability, crystalline structure, barrier properties, morphology, thermal stability, optical properties, anti-microbial characteristics, and mechanical properties. The performance of nanocomposite films and packaging is dependent on the size of the nanofillers used and the uniformity of the nanoparticles (NPs) distribution and dispersion in the matrix. Advancement in nanocomposite technologies is expected to grow with the advent of sustainable, low price, environmentally friendly materials with an enhanced performance. The current review addresses advances in the biopolymeric nanocomposites as alternatives to petroleum plastics in the food packaging industry. It also provides a brief description of biopolymer nanocomposite films and gives general information about different metal NPs with an emphasis on their influence on the emerging characteristics of biodegradable films. The results of recent reports provide a better understanding of the influence of metal NPs in food packaging.
  2. Jafarzadeh, S., Alias, A.K., Ariffin, F., Mahmud, S., Najafi, A, Sheibani, S.
    MyJurnal
    Biodegradable packaging, such as edible coatings and films, is widely used because it is free
    from synthetic substances and does not lead to environment pollution. Therefore, this industry
    is continuously growing. This study aimed to prepare and characterize biodegradable films
    loaded with nano kaolin. Semolina protein films were prepared and plasticized with sorbitol/
    glycerol by the casting method. Nano kaolin with 0%, 1%, 2%, 3%, 4% and 5% (w/w) was
    added to the films before casting them. The films were dried at controlled conditions. The effects
    of the addition of nanoparticles were measured on water absorption capacity (WAC), density,
    ultraviolet transmittance, heat sealability, and film morphology. Results showed that the WAC
    and density of the films decreased by increasing the nano kaolin concentration. By contrast, the
    seal strength for the semolina film was increased by incorporating a low percentage of nano
    kaolin. The X-ray diffraction curves of the semolina film incorporated with kaolin exhibited
    broad reflection, thus indicating that the kaolin nanosize matches the transmission electron
    microscopy images. In summary, nano kaolin incorporation enhanced the physicochemical
    properties and heat sealability of semolina films, thereby indicating the potential application of
    these bionanocomposites to food-product packaging.
  3. Jafarzadeh S, Rhim JW, Alias AK, Ariffin F, Mahmud S
    J Sci Food Agric, 2019 Apr;99(6):2716-2725.
    PMID: 30350410 DOI: 10.1002/jsfa.9439
    BACKGROUND: Active food packaging films with improved properties and strong antimicrobial activity were prepared by blending mixed nanomaterials with different ratio [1:4 (40 mg:160 mg), 3:2 (120 mg: 80 mg), 0:5 (0 mg: 200 mg) and 5:0 (200 mg:0 mg)] of ZnO and kaolin with semolina using a solvent casting method and used for the packaging of low moisture mozzarella cheese to test the effect of packaging on the quality change of the cheese for long-term (up to 72 days) refrigerated storage.

    RESULTS: Compared with the neat semolina film, mechanical strength (TS) of the nanocomposite films increased significantly (increase in 21-65%) and water vapor barrier (WVP) and O2 gas barrier (OP) properties decreased significantly (decrease in 43-50% and 60-65%, respectively) depending on the blending ratio of ZnO and kaolin nanoclay. The nanocomposite films also exhibited strong antimicrobial activity against bacteria (E. coli and S. aureus), yeast (C. albicans), and mold (A. niger). The nanocomposite packaging films were effectively prevented the growth of microorganisms (coliforms, total microbial, and fungi) of the cheese during storage at low-temperature and showed microbial growth of less than 2.5 log CFU/g after 72 days of storage compared to the control group, and the quality of the packaged cheese was still acceptable.

    CONCLUSION: The semolina-based nanocomposite films, especially Sem/Z3 K2 film, were effective for packaging of low moisture mozzarella cheese to maintain the physicochemical properties (pH, moisture, and fat content) and quality (color, taste, texture, and overall acceptability) of the cheese as well as preventing microbial growth (coliforms, total microbial, and fungi). © 2018 Society of Chemical Industry.

  4. Jafarzadeh S, Hadidi M, Forough M, Nafchi AM, Mousavi Khaneghah A
    Crit Rev Food Sci Nutr, 2023;63(23):6393-6411.
    PMID: 35089844 DOI: 10.1080/10408398.2022.2031099
    Conventionally used petrochemical-based plastics are poorly degradable and cause severe environmental pollution. Alternatively, biopolymers (e.g., polysaccharides, proteins, lipids, and their blends) are biodegradable and environment-friendly, and thus their use in packaging technologies has been on the rise. Spoilage of food by mycotoxigenic fungi poses a severe threat to human and animal health. Hence, because of the adverse effects of synthetic preservatives, active packaging as an effective technique for controlling and decontaminating fungi and related mycotoxins has attracted considerable interest. The current review aims to provide an overview of the prevention of fungi and mycotoxins through active packaging. The impact of different additives on the antifungal and anti-mycotoxigenic functionality of packaging incorporating active films/coatings is also investigated. In addition, active packaging applications to control and decontaminate common fungi and mycotoxins in bakery products, cereal grains, fruits, nuts, and dairy products are also introduced. The results of recent studies have confirmed that biopolymer films and coatings incorporating antimicrobial agents provide great potential for controlling common fungi and mycotoxins and enhancing food quality and safety.
  5. Syarifa R, Esmaeili Y, Jafarzadeh S, Garavand F, Mahmud S, Ariffin F
    Food Sci Nutr, 2023 Nov;11(11):7373-7382.
    PMID: 37970401 DOI: 10.1002/fsn3.3665
    Biodegradable films are extremely important for food packaging applications since they minimize environmental effects. However, their application areas are limited due to insufficient characteristics required for particular applications. The objective of the present research was to improve the properties of sago-based biodegradable films embedded with nano- and micro-ZnO (zinc oxide). Nano and micro-ZnO were incorporated in the films at different percentages (1%, 3%, and 5%) in that the films were formed using the solvent casting method. The physicochemical, barrier, thermal, optical, morphology, and mechanical properties of sago-based films were investigated. Adding 5% of micro- and nano-ZnO significantly improved film thickness (0.162 and 0.150 mm, respectively) and WVP (4.40 and 5.64 (kg/s)/(m.Pa), respectively) while the optical properties and thermal stability exhibited superior performance. Micro-ZnO particles improved the mechanical properties of sago-based biodegradable films with the tensile strength reaching 6.173 MPa. Moreover, sago-based nano-ZnO films showed excellent UV-shielding performance and relatively good visible-light transmittance. This study suggested that sago biodegradable film incorporated with micro-ZnO could be an excellent alternative to petroleum-based plastic packaging.
  6. Jafarzadeh S, Alias AK, Ariffin F, Mahmud S, Najafi A
    J Food Sci Technol, 2016 Feb;53(2):1111-9.
    PMID: 27162391 DOI: 10.1007/s13197-015-2017-7
    Effects of nano-kaolin incorporation into semolina films on the physical, mechanical, thermal, barrier and antimicrobial properties of the resulting bio-nanocomposite films were investigated. The properties included crystal structure (by X-ray diffraction), mechanical resistance, color, Fourier transform infrared spectra, decomposition temperature, water-vapor permeability (WVP), oxygen permeability (OP), and antimicrobial activity against Staphylococcus aureus and Escherichia coli. Kaolin was incorporated into biofilms at various amounts (1, 2, 3, 4, and 5 %, w/w total solid). All films were plasticized with 50 % (w/w total solid) combination of sorbitol/glycerol at 3:1 ratio. The incorporation of nanokaolin into semolina films decreased OP and WVP. The moisture content and water solubility of the films were found to decrease by nanokaolin reinforcement, and mechanical properties of films were improved by increasing nanokaolin concentration. Tensile strength and Young's modulus increased from 3.41 to 5.44 MPa and from 63.12 to 136.18, respectively, and elongation-at-break decreased. The films did not exhibit UV absorption. In conclusion, nanokaolin incorporation enhanced the barrier and mechanical properties of semolina films, indicating the potential application of these bio-nanocomposites in food-product packaging.
  7. Moslehi Z, Mohammadi Nafchi A, Moslehi M, Jafarzadeh S
    Food Sci Nutr, 2021 May;9(5):2576-2584.
    PMID: 34026073 DOI: 10.1002/fsn3.2212
    Pistachio is a nut with high consumption that could be affected by aflatoxin contamination, which affects the consumption market; therefore, broad studies seem to be necessary for this area. In the current study, pistachio nuts (Abbasali variety) were coated with different concentrations (0.1%, 0.5%, 1%, and 2%) of methylcellulose (MC) by immersion method and then stored in the incubator (25°C) for four months. The inhibitory effect of hydrocolloid coating on microbial (mold, yeast, and total count) and aflatoxin (B1, B2, G1, G2, and total aflatoxin) contamination, as well as sensory attributes (flavor, color, crispiness, aroma, and total acceptability), was investigated during storage periods. Results showed that the storage period had a significant effect on yeast, mold, and total count. HPLC analysis results showed that coating with MC had a significant inhibitory effect on aflatoxin contamination, and the highest amount of aflatoxin contamination was related to the control sample (3.5%). All samples except sample coated with MC 0.5% had appropriate total acceptability. Regarding the inhibitory effect of MC edible coating on aflatoxin contamination, its application on pistachio nut could be a promising approach to control the fungus infection and reduce aflatoxin production in coated pistachio.
  8. Kokabian A, Daraei Garmakhany A, Jafarzadeh S, Aghajani N
    Food Sci Nutr, 2021 Jan;9(1):331-344.
    PMID: 33473296 DOI: 10.1002/fsn3.1998
    The demand for consuming low-fat or nonfat dairy products, especially fat-free yoghurt, has increased considerably because of the effects of high-fat diet on human health during the two past decades. Generally, consumers prefer low-fat products to the same high-fat products. For this reason, manufacturers are looking for an ideal source for replacing fat substitute. In this research, the effect of grape seed oil (GSO) as a fat replacement on different quality attributes of the produced set yoghurt was determined. The effect of diverse ratios (3:0, 1.5:1.5, and 0.5:3%) of milk fat and GSO on the change in the quality attributes of the set yoghurt for up to 22 days of refrigeration period (4 ± 1°C) was investigated. Statistical analysis revealed that increase in GSO concentration leads to a significant increase (p 
  9. Xue Mei L, Mohammadi Nafchi A, Ghasemipour F, Mat Easa A, Jafarzadeh S, Al-Hassan AA
    Int J Biol Macromol, 2020 Dec 01;164:4603-4612.
    PMID: 32941902 DOI: 10.1016/j.ijbiomac.2020.09.082
    The development of intelligent packaging based on natural and biodegradable resources is getting more attention by researchers in recent years. The aim of this study was to develop and characterize a pH-sensitive films based on sago starch and incorporated with anthocyanin from torch ginger. The pH-sensitive films were fabricated by casting method with incorporation of different torch ginger extract (TGE) concentration. The surface morphology, physicochemical, barrier, and mechanical properties as well as the pH-sensitivity of films were investigated. The film with the highest concentration of TGE showed the lowest tensile strength (4.26 N/m2), toughness (2.54 MJ/m3), Young's modulus (73.96 MPa) and water vapour permeability (2.6 × 10-4 g·m/day·kPa·m2). However, its elongation at break (85.14%), moisture content (0.27%) and water solubility (37.92%) were the highest compared to other films. pH sensitivity analysis showed that the films containing TGE extract, changes in colour by changing the pH. The colour of films changed from pink to slightly green as the pH increased from pH 4 to 9. Thus, the developed pH-sensitive film with torch ginger extract has potential as intelligent packaging for detection of food freshness or spoilage to ensure their quality and safe consumption.
  10. Alirezalu K, Pirouzi S, Yaghoubi M, Karimi-Dehkordi M, Jafarzadeh S, Mousavi Khaneghah A
    Meat Sci, 2021 Jun;176:108475.
    PMID: 33684807 DOI: 10.1016/j.meatsci.2021.108475
    In the current study, the effect on packaged beef fillets (1 × 5 × 8 cm) of using active chitosan film (1%) was investigated. The fillets were stored at 4 °C for 12 days, and the film contained ɛ-polylysine (ɛ-PL) (0.3, 0.6, and 0.9% w/w). Chemical, microbiological, sensory properties, and quality indices of the fillets were investigated. Added to these factors was an assessment of the influence of ɛ-polylysine incorporation on the optical, structural, barrier, and mechanical specifications (elongation at break and tensile strength) of chitosan films. Based on the findings, a significant difference among the corresponding values to thickness, color, water vapor permeability (WVP), and mechanical specifications between the treated films by ɛ-PL and untreated films were noted. In addition, higher values of thickness and tensile strength were correlated with ɛ-PL added active chitosan films while compared with control samples. Additionally, no significant differences regarding the proximate composition (including protein, moisture, and fat) among beef fillet samples were observed. In this regard, due to significantly lower levels of pH, TVB-N, and TBARS ɛ-PL in enriched films, this technique demonstrated some protective effects on beef fillets. Another observation was that lower levels of the total viable count, coliform, mold, yeasts, and higher sensory properties were significantly associated with samples with added ɛ-PL (0.9%). Therefore, adding ɛ-PL into chitosan films could be introduced as an effective technique to extend the shelf life of beef fillets and maintain their quality indices during refrigerated storage.
  11. Jafarzadeh S, Mohammadi Nafchi A, Salehabadi A, Oladzad-Abbasabadi N, Jafari SM
    Adv Colloid Interface Sci, 2021 May;291:102405.
    PMID: 33819726 DOI: 10.1016/j.cis.2021.102405
    New packaging materials are an emerging field in the food industry. Poor thermal, mechanical, chemical, and physical properties of biopolymers, and also their inherent permeability to gases and vapor have increased this interest. Biopolymeric materials (matrix) require fillers, which can react/interact with available matrix in order to provide new formulations with improved properties. Many studies have shown the potential use of metal nanoparticles in biopolymeric packaging and edible coatings for improving their properties. The current review summarizes the characterization of bio-nanocomposite films and edible coatings incorporated with metal nanoparticles on the shelf life and quality of tropical fruits, berries, climacteric/non-climacteric fruits and vegetables. It also provides a brief description of some advantages of bio-nanocomposite films and edible coatings applied to fruits and vegetables such as decreasing the color changes, respiration rate, weight loss and extended shelf life, delaying ripening and being environmentally friendly. The results of recent reports provide a better understanding of the impact of metal nanoparticles incorporated in biopolymers on the shelf life and the quality of fruits and vegetables.
  12. Hashemi Moosavi M, Mousavi Khaneghah A, Javanmardi F, Hadidi M, Hadian Z, Jafarzadeh S, et al.
    Ultrason Sonochem, 2021 Nov;79:105755.
    PMID: 34562735 DOI: 10.1016/j.ultsonch.2021.105755
    Innovative technologies for the pasteurization of food products have increased due to the global demand for higher-quality food products. In this regard, the current article aimed to provide an overview regarding the latest research on US application in the decontamination of fungi in food products and highlight the parameters influencing the effectiveness of this method. Therefore, the related article with inactivation of fungi and mycotoxins by ultrasound among last four years (2018-2021) by using terms such as 'mycotoxin,' 'inactivation,' 'ultrasound,' 'decontamination' among some international databases such as PubMed, Web of Science, Embase and Google Scholar" was retrieved. Ultrasound (US) is considered a non-thermal decontamination method for food products. In US, the release of energy due to the acoustic phenomenon destroys microorganisms. This technology is advantageous as it is inexpensive, eco-friendly, and does not negatively affect food products' food structure and organoleptic properties. The influence of the US on food structure and organoleptic properties dramatically depends on the intensity and energy density applied In addition, it can preserve higher levels of ascorbic acid, lycopene, and chlorophyll in sonicated food products. The treatment conditions, including frequency, intensity, duration, temperature, and processing pressure, influence the effectiveness of decontamination. However, US displays synergistic or antagonistic effects on bacteria, yeasts, molds, and mycotoxins when combined with other types of decontamination methods such as chemical and thermal approaches. Thus, further research is needed to clarify these effects. Overall, the application of US methods in the food industry for decreasing the microbial content of food products during processing has been applied. However, the use of US with other techniques needs to be studied further.
  13. Azlim NA, Mohammadi Nafchi A, Oladzadabbasabadi N, Ariffin F, Ghalambor P, Jafarzadeh S, et al.
    Food Sci Nutr, 2022 Feb;10(2):597-608.
    PMID: 35154695 DOI: 10.1002/fsn3.2680
    A novel intelligent pH-sensing indicator based on gelatin film and anthocyanin extracted from dragon fruit skin (Hylocereus polyrhizus) (DFSE) as a natural dye was developed to monitor food freshness by the casting method. Anthocyanin content of DFSE was 15.66 ± 1.59 mg/L. Dragon fruit bovine gelatin films were characterized by Fourier transform infrared spectroscopy (FTIR) and observed by a scanning electron microscope (SEM). Moisture content, mechanical properties, water solubility, water vapor permeability (WVP), light transmittance, color, and pH-sensing evaluations were evaluated for potential application. FTIR spectroscopy revealed that the extracted anthocyanin could interact with the other film components through hydrogen bonds. When the extract was added, films showed a smooth and clear surface as observed by SEM. The addition of anthocyanin increased the moisture content, thickness, and water solubility of the films, but decreased the WVP and light transmittance of films. Also, the incorporation of 15% v/v DFSE decreased the tensile strength from 17.04 to 12.91 MPa, increasing the elongation at break from 91.19% to 107.86%. The films showed higher ΔE with increasing DFSE content, which indicated that the film had good color variability. A significant difference in the color of the films was observed with exposure to different pH buffer solutions. The findings demonstrated that gelatin film incorporated with DFSE could be used as a visual indicator of pH variations to monitor the freshness of foods during storage time.
  14. Jafarzadeh S, Alias AK, Ariffin F, Mahmud S, Najafi A, Ahmad M
    J Food Sci Technol, 2017 Jan;54(1):105-113.
    PMID: 28242909 DOI: 10.1007/s13197-016-2441-3
    This study aimed to provide novel biopolymer-based antimicrobial films as food packaging that may assist in reducing environmental pollution caused by the accumulation of synthetic food packaging. The blend of ZnO nanorods (ZnO-nr) and nanokaolin in different ratios (1:4, 2:3, 3:2 and 4:1) was incorporated into semolina, and nanocomposite films were prepared using solvent casting. The resulting films were characterized through field-emission scanning electron microscopy and X-ray diffraction. The mechanical, optical, physical, and antimicrobial properties of the films were also analyzed. The water vapor permeability of the films decreased with increasing ZnO-nr percentage, but their tensile strength and modulus of elasticity increased with increasing nanokaolin percentage. The UV transmittance of the semolina films were greatly influenced by an increase in the amount of ZnO-nr. The addition of ZnO-nr: nanokaolin at all ratios (except 1:4) into semolina reduced UV transmission to almost 0%. Furthermore, the ZnO-nr/nanokaolin/semolina films exhibited a strong antimicrobial activity against Staphylococcus aureus. These properties suggest that the combination of ZnO-nr and nanokaolin are potential fillers in semolina-based films to be used as active packaging for food and pharmaceuticals.
  15. Sheibani S, Jafarzadeh S, Qazanfarzadeh Z, Osadee Wijekoon MMJ, Mohd Rozalli NH, Mohammadi Nafchi A
    Int J Biol Macromol, 2024 Apr 10;267(Pt 1):131537.
    PMID: 38608975 DOI: 10.1016/j.ijbiomac.2024.131537
    The growing demand for sustainable and eco-friendly food packaging has prompted research on innovative solutions to environmental and consumer health issues. To enhance the properties of smart packaging, the incorporation of bioactive compounds derived from various natural sources has attracted considerable interest because of their functional properties, including antioxidant and antimicrobial effects. However, extracting these compounds from natural sources poses challenges because of their complex chemical structures and low concentrations. Traditional extraction methods are often environmentally harmful, expensive and time-consuming. Thus, green extraction techniques have emerged as promising alternatives, offering sustainable and eco-friendly approaches that minimise the use of hazardous solvents and reduce environmental impact. This review explores cutting-edge research on the green extraction of bioactive compounds and their incorporation into smart packaging systems in the last 10 years. Then, an overview of bioactive compounds, green extraction techniques, integrated techniques, green extraction solvents and their application in smart packaging was provided, and the impact of bioactive compounds incorporated in smart packaging on the shelf lives of food products was explored. Furthermore, it highlights the challenges and opportunities within this field and presents recommendations for future research, aiming to contribute to the advancement of sustainable and efficient smart packaging solutions.
  16. M H, Chong EWN, Jafarzadeh S, Paridah MT, Gopakumar DA, Tajarudin HA, et al.
    Polymers (Basel), 2019 Jan 26;11(2).
    PMID: 30960194 DOI: 10.3390/polym11020210
    This study aimed to compare the performance of fabricated microbially induced precipitated calcium carbonate⁻ (MB⁻CaCO₃) based red seaweed (Kappaphycus alvarezii) bio-polymer film and commercial calcium carbonate⁻ (C⁻CaCO₃) based red seaweed bio-film with the conventional biodegradable mulch film. To the best of our knowledge, there has been limited research on the application of commercial CaCO₃ (C⁻CaCO₃) and microbially induced CaCO₃ (MB⁻CaCO₃) as fillers for the preparation of films from seaweed bio-polymer and comparison with biodegradable commercial plasticulture packaging. The results revealed that the mechanical, contact angle, and biodegradability properties of the polymer composite films incorporated with C⁻CaCO₃ and MB⁻CaCO₃ fillers were comparable or even superior than the conventional biodegradable mulch film. The seaweed polymer film incorporated with MB⁻CaCO₃ showed the highest contact angle of 100.94°, whereas conventional biodegradable mulch film showed a contact angle of 90.25°. The enhanced contact angle of MB⁻CaCO₃ resulted in high barrier properties, which is highly desired in the current scenario for plasticulture packaging application. The water vapor permeability of MB⁻CaCO₃ based seaweed films was low (2.05 ± 1.06 g·m/m²·s·Pa) when compared to conventional mulch film (2.68 ± 0.35 g·m/m²·s·Pa), which makes the fabricated film an ideal candidate for plasticulture application. The highest tensile strength (TS) was achieved by seaweed-based film filled with commercial CaCO₃ (84.92% higher than conventional mulch film). SEM images of the fractured surfaces of the fabricated films revealed the strong interaction between seaweed and fillers. Furthermore, composite films incorporated with MB⁻CaCO₃ promote brighter film, better water barrier, hydrophobicity, and biodegradability compared to C⁻CaCO₃ based seaweed polymer film and conventional mulch film. From this demonstrated work, it can be concluded that the fabricated MB⁻CaCO₃ based seaweed biopolymer film will be a promising candidate for plasticulture and agricultural application.
  17. Garavand F, Cacciotti I, Vahedikia N, Rehman A, Tarhan Ö, Akbari-Alavijeh S, et al.
    Crit Rev Food Sci Nutr, 2022;62(5):1383-1416.
    PMID: 33153290 DOI: 10.1080/10408398.2020.1843133
    Chitosan is mainly derived from seafood by-products and the thereof chitosan nanoparticles (CNPs) are known as nontoxic, biocompatible, biodegradable and functionalized nanostructures. CNPs, as green fillers, showed an appropriate potential in reinforcement of various biodegradable composites for food packaging and biomedical applications. After evaluation of different fabrication approaches and characterization techniques of CNPs, the changes in physical, mechanical, thermal, structural, morphological, and antimicrobial attributes of nanobiocomposites as a result of CNPs addition are discussed. The influence of bioactive loaded-CNPs and hybrid CNPs with metal nanoparticles, graphene, and montmorillonite in nanocomposites is also presented. Finally, the safety aspects of CNPs-loaded structures are highlighted to evaluate their implementation in food packaging and biomedical systems. It can be concluded that regardless of a few drawbacks, CNPs are promising nanomaterials to improve various operational, structural and antimicrobial properties of biocomposites for various applications in food packaging, delivery systems and biomedical uses.
  18. Jabbari M, Barati M, Shabani M, Kazemian E, Khalili-Moghadam S, Javanmardi F, et al.
    Nutr Cancer, 2022 Jan 20.
    PMID: 35048753 DOI: 10.1080/01635581.2021.2009884
    Bioactive peptides (BPs) content of dairy products is suggested to be a significant ingredient for reducing breast cancer (BC) risk. There is no observational study regarding the correlation between BPs and the risk of chronic disease because BPs' content of food items has not been evaluated in any study. The goal of the current study was to assess the association of dairy-originated BPs with BC risk. One hundred thirty-four women with BC and 267 cancer-free controls were selected from referral hospitals in Tehran, Iran. The development of an in-silico model for estimation of the bioactive and digestion-resistant peptides content of dairy products was done in our previous research. The risk assessment for BPs and BC association was performed across the tertiles of the peptide's intake. Odds ratios (OR) were calculated by logistic regression. The negative association of all bioactive and digestion-resistant peptides except for peptides with high hydrophilicity and low bioactivity was seen in all models. In PR-negative subjects only the association of total dairy intake (OR: 0.61; 95% CI: 0.26-1.45; P for trend: 0.276), peptides with low bioactivity (OR: 0.40; 95% CI: 0.16-1.02; P for trend: 0.0.052), antidiabetic peptides (OR: 0.42; 95% CI: 0.17-1.05; P for trend: 0.0.062) and di-peptides (OR: 0.42; 95% CI: 0.17-1.05; P for trend: 0.0.062) were not significant in the final model. Also, no significant association between ER-negative subjects and total dairy intake (OR: 0.41; 95% CI: 0.16-1.07; P for trend: 0.0.068) was noted. Our findings deduced that milk-derived BPs negatively associate with the risk of ER/PR/HER2 negative BC among Iranian women.Supplemental data for this article is available online at https://doi.org/10.1080/01635581.2021.2009884.
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links