OBJECTIVE: This study derives insights on preferred herbs, perception and predictors of herbal use for health among Malay women in Malaysia.
METHODS: This was a cross-sectional survey, comprising of Malay women, performed in all fourteen states in Malaysia. Respondents were assessed for demographic characteristic, current use of herbal medicine, their preferred herbal medicine and perception of herbal use. Predictors of herbal use were then determined using a multivariate logistic regression model.
RESULTS: A total of 1067 respondents were included in the study of which 592 (55.5%) admitted to using herbs for health. In general, raw herbs were the most preferred herbal remedies used (n=407, 69.5%). A significantly higher number of respondents perceived that herbal remedies would not cause any problems to women's overall health (n=725, 67.9%) (χ2=137.5, df(1), p<0.001), although a large majority agreed that not all remedies were safe for pregnant women (n=979, 91.8%) (χ2=744.03, df(1), p<0.001). Among predictors of herbal use were marital status and income (χ2=203.98, df(795) p<0.001). Those that were married were 3.9 times more likely to use herbs than unmarried women (p<0.001). Having an income of
Objective: This study aimed to determine the effects of selected phytoestrogens on annexin A1 (ANXA1) expression, mode of cell death and cell cycle arrest in different human leukemic cell lines.
Methods: Cells viability were examined by MTT assay and ANXA1 quantification via Enzyme-linked Immunosorbent Assay. Cell cycle and apoptosis were examined by flow cytometer and phagocytosis effect was evaluated using haematoxylin-eosin staining.
Results: Coumestrol significantly (p M phase in K562 and Jurkat cells with an addition of U937 cells for estradiol. Genistein induced cell cycle arrest at S phase for both K562 and Jurkat cells. However, daidzein induced cell cycle arrest at G0/G1 phase in K562, and G2/M phase of Jurkat cells. Coumestrol, genistein and estradiol induced phagocytosis in all tested cells but daidzein induced significant (p
METHOD: M. oleifera leaves, seeds and pods were extracted with 80% of ethanol. Individual compounds were isolated using a column chromatographic technique and elucidated based on the nuclear magnetic resonance (NMR) and electrospray ionisation mass spectrometry (ESIMS) spectral data. The anti-allergic activity of the extracts, isolated compounds and ketotifen fumarate as a positive control was evaluated using rat basophilic leukaemia (RBL-2H3) cells for early and late phases of allergic reactions. The early phase was determined based on the inhibition of beta-hexosaminidase and histamine release; while the late phase was based on the inhibition of interleukin (IL-4) and tumour necrosis factor (TNF-α) release.
RESULTS: Two new compounds; ethyl-(E)-undec-6-enoate (1) and 3,5,6-trihydroxy-2-(2,3,4,5,6-pentahydroxyphenyl)-4H-chromen-4-one (2) together with six known compounds; quercetin (3), kaempferol (4), β-sitosterol-3-O-glucoside (5), oleic acid (6), glucomoringin (7), 2,3,4-trihydroxybenzaldehyde (8) and stigmasterol (9) were isolated from M. oleifera extracts. All extracts and the isolated compounds inhibited mast cell degranulation by inhibiting beta-hexosaminidase and histamine release, as well as the release of IL-4 and TNF-α at varying levels compared with ketotifen fumarate.
CONCLUSION: The study suggested that M. oleifera and its isolated compounds potentially have an anti-allergic activity by inhibiting both early and late phases of allergic reactions.
METHODS: Transfection of ANXA1 siRNA was conducted to downregulate ANXA1 expression in Jurkat, K562 and U937 cells. Apoptosis and cell cycle assays were conducted using flow cytometry. Western blot was performed to evaluate ANXA1, caspases and Bcl-2 proteins expression. Phagocytosis was determined using hematoxylin and eosin staining.
RESULTS: The expression of ANXA1 after the knockdown was significantly downregulated in all cell lines. Genistein significantly induced apoptosis associated with an upregulation of procaspase-3, -9, and - 1 in Jurkat cells. The Bcl-2 expression showed no significant difference in Jurkat, K562 and U937 cells. Treatment with phytoestrogens increased procaspase-1 expression in Jurkat and U937 cells while no changes were detected in K562 cells. Flow cytometry analysis demonstrated that after ANXA1 knockdown, coumestrol and genistein caused cell cycle arrest at G2/M phase in selected type of cells. The percentage of phagocytosis and phagocytosis index increased after the treatment with phytoestrogens in all cell lines.
CONCLUSION: Phytoestrogens induced cell death in ANXA1-knockdown leukemia cells, mediated by Annexin A1 proteins. Graphical abstract.