RESULTS: Here, we have undertaken further analysis of role of OsFAD2-1 in the developing rice grain. The use of Illumina-based NGS transcriptomics analysis of developing rice grain reveals that knockdown of Os-FAD2-1 gene expression was accompanied by the down regulation of the expression of a number of key genes in the lipid biosynthesis pathway in the HO rice line. A slightly higher level of oil accumulation was also observed in the HO-RBO.
CONCLUSION: Prominent among the down regulated genes were those that coded for FatA, LACS, SAD2, SAD5, caleosin and steroleosin. It may be possible to further increase the oleic acid content in rice oil by altering the expression of the lipid biosynthetic genes that are affected in the HO line.
THEORY: We present a high-fidelity, image-based nonequilibrium computational model to quantify and visualize the mass transport as well as the deactivation process of a core-shell polymeric microreactor. In stark contrast with other published works, our microstructure-based computer simulation can provide a single-particle visualization with a micrometer spatial accuracy.
FINDINGS: We show how the interplay of kinetics and thermodynamics controls the product-induced deactivation process. The model predicts and visualizes the non-trivial, spatially resolved active catalyst phase patterns within a core-shell system. Moreover, we also show how the microstructure influences the formation of foulant within a core-shell structure; that is, begins from the core and grows radially onto the shell section. Our results suggest that the deactivation process is highly governed by the porosity/microstructure of the microreactor as well as the affinity of the products towards the solid phase of the reactor.
RESULTS: We found that cumulative food intake was not changed in the group with 12 h daily fasting, but significantly decreased in the 16 and 20 h fasting groups. The composition of gut microbiota was altered by all these types of intermittent fasting. At genus level, 16 h fasting led to increased level of Akkermansia and decreased level of Alistipes, but these effects disappeared after the cessation of fasting. No taxonomic differences were identified in the other two groups.
CONCLUSIONS: These data indicated that intermittent fasting shapes gut microbiota in healthy mice, and the length of daily fasting interval may influence the outcome of intermittent fasting.
METHODS: The Web of Science, Scopus, PubMed/Medline, Embase, and Google Scholar databases were searched for all available observational studies that reported the risk of venous thromboembolism (VTE) based on serum vitamin D levels categories. The search was performed up to March 2020.
RESULTS: Seven studies were included. The overall analysis showed a significantly increased risk of VTE in subjects with low levels of serum vitamin D compared with those with normal vitamin D levels (RR = 1.34; 95% CI: 1.07-1.69; P = 0.011). In a sensitivity analysis, we did not observe a significant effect of any individual study on the combined effect sizes. Nevertheless, significant heterogeneity was present among the studies (Cochrane Q test, p = 0.018, I2 = 61%). In the stratified analysis, low vitamin D levels were positively associated with an increased risk of VTE in prospective population-based studies (RR = 1.31; 95% CI: 1.06-1.61; P = 0.010) and in subjects below 60 years old (RR = 1.28; 95% CI: 1.07-1.54; P = 0.060).
CONCLUSION: our systematic review and meta-analysis showed that a low serum vitamin D level was indeed associated with an increased risk of VTE.