Displaying publications 1 - 20 of 22 in total

Abstract:
Sort:
  1. Tan CH, Tan KY, Lim SE, Tan NH
    J Proteomics, 2015 Aug 3;126:121-30.
    PMID: 26047715 DOI: 10.1016/j.jprot.2015.05.035
    The venom proteome of Hydrophis schistosus (syn: Enhydrina schistosa) captured in Malaysian waters was investigated using reverse-phase HPLC, SDS-PAGE and high-resolution liquid chromatography-tandem mass spectrometry. The findings revealed a minimalist profile with only 18 venom proteins. These proteins belong to 5 toxin families: three-finger toxin (3FTx), phospholipase A2 (PLA2), cysteine-rich secretory protein (CRISP), snake venom metalloprotease (SVMP) and L-amino acid oxidase (LAAO). The 3FTxs (3 short neurotoxins and 4 long neurotoxins) constitute 70.5% of total venom protein, 55.8% being short neurotoxins and 14.7% long neurotoxins. The PLA2 family consists of four basic (21.4%) and three acidic (6.1%) isoforms. The minor proteins include one CRISP (1.3%), two SVMPs (0.5%) and one LAAO (0.2%). This is the first report of the presence of long neurotoxins, CRISP and LAAO in H. schistosus venom. The neurotoxins and the basic PLA2 are highly lethal in mice with an intravenous median lethal dose of <0.2 μg/g. Cross-neutralization by heterologous elapid antivenoms (Naja kaouthia monovalent antivenom and Neuro polyvalent antivenom) was moderate against the long neurotoxin and basic PLA2, but weak against the short neurotoxin, indicating that the latter is the limiting factor to be overcome for improving the antivenom cross-neutralization efficacy.
  2. Ahmad K, Anchah L, Ting CY, Lim SE
    Contemp Clin Trials Commun, 2024 Apr;38:101280.
    PMID: 38435429 DOI: 10.1016/j.conctc.2024.101280
    AIMS: This study presents a protocol for the Pharmacy Integrated Community Care (PICC) program, meticulously designed to enhance Hemoglobin A1c (HbA1c) levels and augment knowledge about diabetes mellitus (DM) among individuals diagnosed with Type 2 Diabetes Mellitus (T2DM) in the Sarawak State of Malaysia.

    METHODS: From 1 May to December 31, 2023, a prospective, multicenter, parallel-design randomised controlled trial will be conducted with two groups, each consisting of 47 participants. The intervention group will receive a structured, four-session group-based program guided by experienced pharmacists, focusing on medication adherence and diabetes management. The control group will follow the standard Diabetes Mellitus Adherence Clinic program. The primary outcomes of this study encompass enhancements in knowledge regarding diabetes medication management and adherence, followed by subsequent changes in HbA1c levels.

    CONCLUSIONS: The successful implementation of the PICC program holds promise for enhancing health outcomes in the T2DM population, potentially leading to more effective diabetes management initiatives and better health practices in the community.

    TRIAL REGISTRATION CLINICALTRIALSGOV IDENTIFIER: NCT05106231.

  3. Ang HC, Sornarajah R, Lim SE, Syn CK, Tan-Siew WF, Chow ST, et al.
    Forensic Sci Int, 2005 Mar 10;148(2-3):243-5.
    PMID: 15639622
    Allele frequencies for the 13 CODIS (Combined DNA Index System, USA) STR loci included in the AmpFISTR Profiler Plus and AmpFISTR Cofiler kits (Applied Biosystems, Foster City, USA) were determined in a sample of 197 unrelated Malays in Singapore.
  4. Yang SK, Yusoff K, Ajat M, Yap WS, Lim SE, Lai KS
    J Pharm Anal, 2021 Apr;11(2):210-219.
    PMID: 34012697 DOI: 10.1016/j.jpha.2020.05.014
    Mining of plant-derived antimicrobials is the major focus at current to counter antibiotic resistance. This study was conducted to characterize the antimicrobial activity and mode of action of linalyl anthranilate (LNA) against carbapenemase-producing Klebsiella pneumoniae (KPC-KP). LNA alone exhibited bactericidal activity at 2.5% (V/V), and in combination with meropenem (MPM) at 1.25% (V/V). Comparative proteomic analysis showed a significant reduction in the number of cytoplasmic and membrane proteins, indicating membrane damage in LNA-treated KPC-KP cells. Up-regulation of oxidative stress regulator proteins and down-regulation of oxidative stress-sensitive proteins indicated oxidative stress. Zeta potential measurement and outer membrane permeability assay revealed that LNA increases both bacterial surface charge and membrane permeability. Ethidium bromide influx/efflux assay showed increased uptake of ethidium bromide in LNA-treated cells, inferring membrane damage. Furthermore, intracellular leakage of nucleic acid and proteins was detected upon LNA treatment. Scanning and transmission electron microscopies again revealed the breakage of bacterial membrane and loss of intracellular materials. LNA was found to induce oxidative stress by generating reactive oxygen species (ROS) that initiate lipid peroxidation and damage the bacterial membrane. In conclusion, LNA generates ROS, initiates lipid peroxidation, and damages the bacterial membrane, resulting in intracellular leakage and eventually killing the KPC-KP cells.
  5. Yang SK, Yusoff K, Ajat M, Thomas W, Abushelaibi A, Akseer R, et al.
    PLoS One, 2019;14(4):e0214326.
    PMID: 30939149 DOI: 10.1371/journal.pone.0214326
    Klebsiella pneumoniae (KP) remains the most prevalent nosocomial pathogen and carries the carbapenemase (KPC) gene which confers resistance towards carbapenem. Thus, it is necessary to discover novel antimicrobials to address the issue of antimicrobial resistance in such pathogens. Natural products such as essential oils are a promising source due to their complex composition. Essential oils have been shown to be effective against pathogens, but the overall mechanisms have yet to be fully explained. Understanding the molecular mechanisms of essential oil towards KPC-KP cells would provide a deeper understanding of their potential use in clinical settings. Therefore, we aimed to investigate the mode of action of essential oil against KPC-KP cells from a proteomic perspective by comparing the overall proteome profile of KPC-KP cells treated with cinnamon bark (Cinnamomum verum J. Presl) essential oil (CBO) at their sub-inhibitory concentration of 0.08% (v/v). A total of 384 proteins were successfully identified from the non-treated cells, whereas only 242 proteins were identified from the CBO-treated cells. Proteins were then categorized based on their biological processes, cellular components and molecular function prior to pathway analysis. Pathway analysis showed that CBO induced oxidative stress in the KPC-KP cells as indicated by the abundance of oxidative stress regulator proteins such as glycyl radical cofactor, catalase peroxidase and DNA mismatch repair protein. Oxidative stress is likely to oxidize and disrupt the bacterial membrane as shown by the loss of major membrane proteins. Several genes selected for qRT-PCR analysis validated the proteomic profile and were congruent with the proteomic abundance profiles. In conclusion, KPC-KP cells exposed to CBO undergo oxidative stress that eventually disrupts the bacterial membrane possibly via interaction with the phospholipid bilayer. Interestingly, several pathways involved in the bacterial membrane repair system were also affected by oxidative stress, contributing to the loss of cells viability.
  6. Yang SK, Yusoff K, Mai CW, Lim WM, Yap WS, Lim SE, et al.
    Molecules, 2017 Nov 04;22(11).
    PMID: 29113046 DOI: 10.3390/molecules22111733
    Combinatory therapies have been commonly applied in the clinical setting to tackle multi-drug resistant bacterial infections and these have frequently proven to be effective. Specifically, combinatory therapies resulting in synergistic interactions between antibiotics and adjuvant have been the main focus due to their effectiveness, sidelining the effects of additivity, which also lowers the minimal effective dosage of either antimicrobial agent. Thus, this study was undertaken to look at the effects of additivity between essential oils and antibiotic, via the use of cinnamon bark essential oil (CBO) and meropenem as a model for additivity. Comparisons between synergistic and additive interaction of CBO were performed in terms of the ability of CBO to disrupt bacterial membrane, via zeta potential measurement, outer membrane permeability assay and scanning electron microscopy. It has been found that the additivity interaction between CBO and meropenem showed similar membrane disruption ability when compared to those synergistic combinations which was previously reported. Hence, results based on our studies strongly suggest that additive interaction acts on a par with synergistic interaction. Therefore, further investigation in additive interaction between antibiotics and adjuvant should be performed for a more in depth understanding of the mechanism and the impacts of such interaction.
  7. Yap PS, Cheng WH, Chang SK, Lim SE, Lai KS
    Cells, 2022 Sep 26;11(19).
    PMID: 36230959 DOI: 10.3390/cells11192995
    There has been a resurgence in the clinical use of polymyxin antibiotics such as colistin due to the limited treatment options for infections caused by carbapenem-resistant Enterobacterales (CRE). However, this last-resort antibiotic is currently confronted with challenges which include the emergence of chromosomal and plasmid-borne colistin resistance. Colistin resistance in Klebsiella pneumoniae is commonly caused by the mutations in the chromosomal gene mgrB. MgrB spans the inner membrane and negatively regulates PhoP phosphorylation, which is essential for bacterial outer membrane lipid biosynthesis. The present review intends to draw attention to the role of mgrB chromosomal mutations in membrane permeability in K. pneumoniae that confer colistin resistance. With growing concern regarding the global emergence of colistin resistance, deciphering physical changes of the resistant membrane mediated by mgrB inactivation may provide new insights for the discovery of novel antimicrobials that are highly effective at membrane penetration, in addition to finding out how this can help in alleviating the resistance situation.
  8. Hii LW, Lim SE, Leong CO, Chin SY, Tan NP, Lai KS, et al.
    BMC Complement Altern Med, 2019 Sep 14;19(1):257.
    PMID: 31521140 DOI: 10.1186/s12906-019-2663-9
    BACKGROUND: Clinacanthus nutans extracts have been consumed by the cancer patients with the hope that the extracts can kill cancers more effectively than conventional chemotherapies. Our previous study reported its anti-inflammatory effects were caused by inhibiting Toll-like Receptor-4 (TLR-4) activation. However, we are unsure of its anticancer effect, and its interaction with existing chemotherapy.

    METHODS: We investigated the anti-proliferative efficacy of polar leaf extracts (LP), non-polar leaf extracts (LN), polar stem extract (SP) and non-polar stem extracts (SN) in human breast, colorectal, lung, endometrial, nasopharyngeal, and pancreatic cancer cells using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide, MTT assay. The most potent extracts was tested along with gemcitabine using our established drug combination analysis. The effect of the combinatory treatment in apoptosis were quantified using enzyme-linked immunosorbent assay (ELISA), Annexin V assay, antibody array and immunoblotting. Statistical significance was analysed using one-way analysis of variance (ANOVA) and post hoc Dunnett's test. A p-value of less than 0.05 (p 

  9. Mahizan NA, Yang SK, Moo CL, Song AA, Chong CM, Chong CW, et al.
    Molecules, 2019 Jul 19;24(14).
    PMID: 31330955 DOI: 10.3390/molecules24142631
    The evolution of antimicrobial resistance (AMR) in pathogens has prompted extensive research to find alternative therapeutics. Plants rich with natural secondary metabolites are one of the go-to reservoirs for discovery of potential resources to alleviate this problem. Terpenes and their derivatives comprising of hydrocarbons, are usually found in essential oils (EOs). They have been reported to have potent antimicrobial activity, exhibiting bacteriostatic and bactericidal effects against tested pathogens. This brief review discusses the activity of terpenes and derivatives against pathogenic bacteria, describing the potential of the activity against AMR followed by the possible mechanism exerted by each terpene class. Finally, ongoing research and possible improvisation to the usage of terpenes and terpenoids in therapeutic practice against AMR are discussed.
  10. Maran S, Faten SA, Lim SE, Lai KS, Ibrahim WPW, Ankathil R, et al.
    Biomed Res Int, 2020;2020:6945730.
    PMID: 33062692 DOI: 10.1155/2020/6945730
    Background: The 22q11.2 deletion syndrome (22q11.2DS) is the most common form of deletion disorder in humans. Low copy repeats flanking the 22q11.2 region confers a substrate for nonallelic homologous recombination (NAHR) events leading to rearrangements which have been reported to be associated with highly variable and expansive phenotypes. The 22q11.2DS is reported as the most common genetic cause of congenital heart defects (CHDs).

    Methods: A total of 42 patients with congenital heart defects, as confirmed by echocardiography, were recruited. Genetic molecular analysis using a fluorescence in situ hybridization (FISH) technique was conducted as part of routine 22q11.2DS screening, followed by multiplex ligation-dependent probe amplification (MLPA), which serves as a confirmatory test.

    Results: Two of the 42 CHD cases (4.76%) indicated the presence of 22q11.2DS, and interestingly, both cases have conotruncal heart defects. In terms of concordance of techniques used, MLPA is superior since it can detect deletions within the 22q11.2 locus and outside of the typically deleted region (TDR) as well as duplications.

    Conclusion: The incidence of 22q11.2DS among patients with CHD in the east coast of Malaysia is 0.047. MLPA is a scalable and affordable alternative molecular diagnostic method in the screening of 22q11.2DS and can be routinely applied for the diagnosis of deletion syndromes.

  11. Lai PJ, Ng EV, Yang SK, Moo CL, Low WY, Yap PS, et al.
    3 Biotech, 2020 Jul;10(7):313.
    PMID: 32596098 DOI: 10.1007/s13205-020-02304-3
    To better understand the synergistic antibacterial activity between piperacillin and Lavandula angustifolia essential oil (LEO) against multidrug-resistant Escherichia coli, we performed microarray transcriptomic analysis of LEO when used alone and in combination with piperacillin against the non-treated control. In total, 90 genes were differentially expressed after the combination of LEO and piperacillin treatment. Among the up-regulated genes, nfsB, nemA, fruA, nfsB, nemA are known to control microbial metabolism and nitrotoluene degradation, which were observed only in the LEO-piperacillin combinatory treatment. Four candidate genes from the microarray result, srIA, srID, waaR and nfsB, were validated by qRT-PCR as these genes showed differential expression consistently in the two methods. Biochemical pathway analysis showed that there was upregulation of genes involved in several biological processes including fructose and mannose metabolism, phosphotransferase system (PTS), lipopolysaccharide biosynthesis and nitrotoluene degradation. Genes involved in microbial metabolism in diverse environments were found both up- and down-regulated in LEO-piperacillin combinatory treatment. Our study provides new information concerning the transcriptional changes that occur during the LEO and piperacillin interaction against the multidrug-resistant bacteria and contributes to unravel the mechanisms underlying this synergism.
  12. Leong WH, Teh SY, Hossain MM, Nadarajaw T, Zabidi-Hussin Z, Chin SY, et al.
    J Environ Manage, 2020 Apr 15;260:109987.
    PMID: 32090796 DOI: 10.1016/j.jenvman.2019.109987
    This review intends to integrate the relevant information that is related to pesticide applications in food commodities and will cover three main sections. The first section encompasses some of the guidelines that have been implemented on management of pesticide application worldwide, such as the establishment of a value called Maximum Residue Level (MRL) through the application of Good Agricultural Practices (GAPs) into daily agricultural activities. A brief overview of the methods adopted in quantification of these trace residues in different food samples will also be covered. Briefly, pesticide analysis is usually performed in two stages: sample preparation and analytical instrumentation. Some of the preparation methods such as QuEChERs still remain as the technique of choice for most of the analytical scientists. In terms of the instrumentation such as the gas chromatography-mass spectrophotometry (GC-MS) and high performance-liquid chromatography (HPLC), these are still widely used, in spite of new inventions that are more sustainable and efficient such as the capillary electrophoresis (CE). Finally, the third section emphasizes on how pesticides can affect our health significantly whereby different types of pesticides result in different adverse health implications, despite its application benefits in agriculture in controlling pests. To date, there are limited reviews on pesticide usage in many agricultural-based nations; for the purpose of this review, Malaysia is selected to better illustrate pesticide regulations and implementation of policies. Finally, the review aims to provide an insight on how implementation of GAP and food safety assurance are inter-related and with this established correlation, to identify further measures for improvement to enable reinforcement of optimised agricultural practices specifically in these countries.
  13. Alessandro L, Low KE, Abushelaibi A, Lim SE, Cheng WH, Chang SK, et al.
    Int J Mol Sci, 2022 Nov 18;23(22).
    PMID: 36430761 DOI: 10.3390/ijms232214285
    The diagnosis of endometrial cancer involves sequential, invasive tests to assess the thickness of the endometrium by a transvaginal ultrasound scan. In 6−33% of cases, endometrial biopsy results in inadequate tissue for a conclusive pathological diagnosis and 6% of postmenopausal women with non-diagnostic specimens are later discovered to have severe endometrial lesions. Thus, identifying diagnostic biomarkers could offer a non-invasive diagnosis for community or home-based triage of symptomatic or asymptomatic women. Herein, this study identified high-risk pathogenic nsSNPs in the NRAS gene. The nsSNPs of NRAS were retrieved from the NCBI database. PROVEAN, SIFT, PolyPhen-2, SNPs&GO, PhD-SNP and PANTHER were used to predict the pathogenicity of the nsSNPs. Eleven nsSNPs were identified as “damaging”, and further stability analysis using I-Mutant 2.0 and MutPred 2 indicated eight nsSNPs to cause decreased stability (DDG scores < −0.5). Post-translational modification and protein−protein interactions (PPI) analysis showed putative phosphorylation sites. The PPI network indicated a GFR-MAPK signalling pathway with higher node degrees that were further evaluated for drug targets. The P34L, G12C and Y64D showed significantly lower binding affinity towards GTP than wild-type. Furthermore, the Kaplan−Meier bioinformatics analyses indicated that the NRAS gene deregulation affected the overall survival rate of patients with endometrial cancer, leading to prognostic significance. Findings from this could be considered novel diagnostic and therapeutic markers.
  14. Varijakzhan D, Loh JY, Yap WS, Yusoff K, Seboussi R, Lim SE, et al.
    Mar Drugs, 2021 Apr 27;19(5).
    PMID: 33925365 DOI: 10.3390/md19050246
    Marine sponges are sessile invertebrates that can be found in temperate, polar and tropical regions. They are known to be major contributors of bioactive compounds, which are discovered in and extracted from the marine environment. The compounds extracted from these sponges are known to exhibit various bioactivities, such as antimicrobial, antitumor and general cytotoxicity. For example, various compounds isolated from Theonella swinhoei have showcased various bioactivities, such as those that are antibacterial, antiviral and antifungal. In this review, we discuss bioactive compounds that have been identified from marine sponges that showcase the ability to act as antibacterial, antiviral, anti-malarial and antifungal agents against human pathogens and fish pathogens in the aquaculture industry. Moreover, the application of such compounds as antimicrobial agents in other veterinary commodities, such as poultry, cattle farming and domesticated cats, is discussed, along with a brief discussion regarding the mode of action of these compounds on the targeted sites in various pathogens. The bioactivity of the compounds discussed in this review is focused mainly on compounds that have been identified between 2000 and 2020 and includes the novel compounds discovered from 2018 to 2021.
  15. Aljaafari MN, AlAli AO, Baqais L, Alqubaisy M, AlAli M, Molouki A, et al.
    Molecules, 2021 Jan 26;26(3).
    PMID: 33530290 DOI: 10.3390/molecules26030628
    The emergence of antimicrobial resistance (AMR) has urged researchers to explore therapeutic alternatives, one of which includes the use of natural plant products such as essential oils (EO). In fact, EO obtained from clove, oregano, thymus, cinnamon bark, rosemary, eucalyptus, and lavender have been shown to present significant inhibitory effects on bacteria, fungi, and viruses; many studies have been done to measure EO efficacy against microorganisms. The strategy of combinatory effects via conventional and non-conventional methods revealed that the combined effects of EO-EO or EO-antibiotic exhibit enhanced efficacy. This paper aims to review the antimicrobial effects of EO, modes of EO action (membrane disruption, efflux inhibition, increase membrane permeability, and decrease in intracellular ATP), and their compounds' potential as effective agents against bacteria, fungi, and viruses. It is hoped that the integration of EO applications in this work can be used to consider EO for future clinical applications.
  16. Almakhari M, Chen Y, Kong AS, Moradigaravand D, Lai KS, Lim SE, et al.
    PLoS One, 2024;19(6):e0298092.
    PMID: 38905172 DOI: 10.1371/journal.pone.0298092
    The TBX1 gene plays a critical role in the development of 22q11.2 deletion syndrome (22q11.2DS), a complex genetic disorder associated with various phenotypic manifestations. In this study, we performed in-silico analysis to identify potentially deleterious non-synonymous single nucleotide polymorphisms (nsSNPs) within the TBX1 gene and evaluate their functional and structural impact on 22q11.2DS. A comprehensive analysis pipeline involving multiple computational tools was employed to predict the pathogenicity of nsSNPs. This study assessed protein stability and explored potential alterations in protein-protein interactions. The results revealed the rs751339103(C>A), rs780800634(G>A), rs1936727304(T>C), rs1223320618(G>A), rs1248532217(T>C), rs1294927055 (C>T), rs1331240435 (A>G, rs1601289406 (A>C), rs1936726164 (G>A), and rs911796187(G>A) with a high-risk potential for affecting protein function and stability. These nsSNPs were further analyzed for their impact on post-translational modifications and structural characteristics, indicating their potential disruption of molecular pathways associated with TBX1 and its interacting partners. These findings provide a foundation for further experimental studies and elucidation of potential therapeutic targets and personalized treatment approaches for individuals affected by 22q11.2DS.
  17. Bhoo-Pathy N, Hartman M, Yip CH, Saxena N, Taib NA, Lim SE, et al.
    PLoS One, 2012;7(2):e30995.
    PMID: 22363531 DOI: 10.1371/journal.pone.0030995
    The burden of breast cancer in Asia is escalating. We evaluated the impact of ethnicity on survival after breast cancer in the multi-ethnic region of South East Asia.
  18. Saxena N, Hartman M, Yip CH, Bhoo-Pathy N, Khin LW, Taib NA, et al.
    PLoS One, 2012;7(9):e45809.
    PMID: 23029254 DOI: 10.1371/journal.pone.0045809
    Lymph node ratio (LNR, i.e. the ratio of the number of positive nodes to the total number of nodes excised) is reported to be superior to the absolute number of nodes involved (pN stage) in classifying patients at high versus low risk of death following breast cancer. The added prognostic value of LNR over pN in addition to other prognostic factors has never been assessed.
  19. Bhoo-Pathy N, Yip CH, Taib NA, Hartman M, Saxena N, Iau P, et al.
    Breast, 2011 Apr;20 Suppl 2:S75-80.
    PMID: 21316967 DOI: 10.1016/j.breast.2011.01.015
    Two hospital-based breast cancer databases (University Malaya Medical Center, Malaysia [n = 1513] and National University Hospital, Singapore [n = 2545]) were merged into a regional registry of breast cancer patients diagnosed between 1990 and 2007. A review of the data found 51% of patients diagnosed before the age of 50 years. and 72% percent of the women were Chinese followed by Malays (16%), Indians (8%), and other races (4%). Median tumor size at presentation was 26 mm and about 25% of patients presented with TNM stage III or IV disease. Most tumors were of ductal histology (87%). Fifty-seven percent of tumors were estrogen receptor positive and 40% were poorly differentiated. Of those patients who had surgery, 70% had mastectomy while 30% had breast conserving surgery. Overall, chemotherapy was administered to 56% of patients and hormonal treatment to 60%. Five-year overall survival was 82.5% in patients with TNM stage 0 to stage II cancer, and 30.2% in those with later stages.
  20. Ting CY, Adruce SAZ, Hassali MA, Ting H, Lim CJ, Ting RS, et al.
    Trials, 2019 05 10;20(1):267.
    PMID: 31077233 DOI: 10.1186/s13063-019-3348-x
    After publication of the original article [1], the authors have notified us that there are changes to the primary outcome of the study, instrument, subject's inclusion criteria, the funding and acknowledgements. These changes were made during the recruitment of participants and after approved by the Medical Research and Ethics Committee (MREC), National Institutes of Health Malaysia, on 16th November 2018.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links