Methods: This is a cross-sectional study using an available secondary data source - the Malaysian national dengue passive surveillance system, e-Dengue registry. A total of 61 455 serologically confirmed dengue cases from the Klang Valley, registered in year 2014, were included. We retrospectively examined the relationship between demographic factors and the choice of health-care sector by logistic regression.
Results: The median age of the cohort was 26 (interquartile range: 17 to 37) years. More private facilities (54.4%) were used for inpatient care; more public facilities (68.2%) were used for outpatient care. The Chinese and urban populations showed significantly higher use of the private health-care sector with an adjusted odds ratio of 4.8 [95% confidence interval (CI): 4.6-5.1] and 2.3 (95% CI: 2.2-2.4), respectively.
Conclusion: Both public and private health facilities bear significant responsibilities in delivering health-care services to dengue patients. The workload of both sectors should be included in future health policy planning by public agencies.
METHODS: This is a secondary data review of all diagnosed and reported malaria confirmed cases notified to the Ministry of Health, Malaysia between January 2013 and December 2017.
RESULTS: From 2013 to 2017, a total of 16,500 malaria cases were notified in Malaysia. The cases were mainly contributed from Sabah (7150; 43.3%) and Sarawak (5684; 34.4%). Majority of the patients were male (13,552; 82.1%). The most common age group in Peninsular Malaysia was 20 to 29 years (1286; 35.1%), while Sabah and Sarawak reported highest number of malaria cases in age group of 30 to 39 years (2776; 21.6%). The top two races with malaria in Sabah and Sarawak were Bumiputera Sabah (5613; 43.7%) and Bumiputera Sarawak (4512; 35.1%), whereas other ethnic group (1232; 33.6%) and Malays (1025; 28.0%) were the two most common races in Peninsular Malaysia. Plasmodium knowlesi was the commonest species in Sabah and Sarawak (9902; 77.1%), while there were more Plasmodium vivax cases (1548; 42.2%) in Peninsular Malaysia. The overall average incidence rate, mortality rate and case fatality rates for malaria from 2013 to 2017 in Malaysia were 0.106/1000, 0.030/100,000 and 0.27%, respectively. Sarawak reported the highest average incidence rate of 0.420/1000 population followed by Sabah (0.383/1000). Other states in Peninsular Malaysia reported below the national average incidence rate with less than 0.100/1000.
CONCLUSIONS: There were different trends and characteristics of notified malaria cases in Peninsular Malaysia and Sabah and Sarawak. They provide useful information to modify current prevention and control measures so that they are customised to the peculiarities of disease patterns in the two regions in order to successfully achieve the pre-elimination of human-only species in the near future.
METHODS: This was an observational study reviewing all confirmed ZIKV cases detected in Malaysia through the ZIKV clinical surveillance and Flavivirus laboratory surveillance between June 2015 and December 2017. All basic demographic characteristics, co-morbidities, clinical, laboratory and outcome data of the confirmed ZIKV cases were collected from the source documents.
RESULTS: Only eight out of 4043 cases tested positive for ZIKV infection during that period. The median age of infected patients was 48.6 years and majority was Chinese. Two of the subjects were pregnant. The median interval between the onset of disease and the first detection of ZIKV Ribonucleic Acid (RNA) in body fluid was 3 days. Six cases had ZIKV RNA detected in both serum and urine samples. Phylogenetic analysis suggests that isolates from the 7 cases of ZIKV infection came from two clusters, both of which were local circulating strains.
CONCLUSION: Despite similar ecological background characteristics, Malaysia was not as affected by the recent ZIKV outbreak compared to Brazil and Singapore. This could be related to pre-existing immunity against ZIKV in this population, which developed after the first introduction of the ZIKV in Malaysia decades ago. A serosurvey to determine the seroprevalence of ZIKV in Malaysia was carried out in 2017. The differences in circulating ZIKV strains could be another reason as to why Malaysia seemed to be protected from an outbreak.
METHODS: The trial is conducted in randomly allocated clusters of low- and medium-cost housing located in the Federal Territory of Kuala Lumpur and Putrajaya. The IVM approach combines: targeted outdoor residual spraying with K-Othrine Polyzone, deployment of mosquito traps as auto-dissemination devices, and community engagement activities. The trial includes 300 clusters randomly allocated in a 1:1 ratio. The clusters receive either the preventive IVM in addition to the routine vector control activities or the routine vector control activities only. Epidemiological data from monthly confirmed dengue cases during the study period will be obtained from the Vector Borne Disease Sector, Malaysian Ministry of Health e-Dengue surveillance system. Entomological surveillance data will be collected in 12 clusters randomly selected from each arm. To measure the effectiveness of the IVM approach on dengue incidence, a negative binomial regression model will be used to compare the incidence between control and intervention clusters. To quantify the effect of the interventions on the main entomological outcome, ovitrap index, a modified ordinary least squares regression model using a robust standard error estimator will be used.
DISCUSSION: Considering the ongoing expansion of dengue burden in Malaysia, setting up proactive control strategies is critical. Despite some limitations of the trial such as the use of passive surveillance to identify cases, the results will be informative for a better understanding of effectiveness of proactive IVM approach in the control of dengue. Evidence from this trial may help justify investment in preventive IVM approaches as preferred to reactive case management strategies.
TRIAL REGISTRATION: ISRCTN ISRCTN81915073 . Retrospectively registered on 17 April 2020.
METHODS: The residential addresses of 3054 notified CHIKV cases in 2009-2010 were georeferenced onto a base map of Sarawak with spatial data of rivers and roads using R software. The spatiotemporal spread was determined and clusters were detected using the space-time scan statistic with SaTScan.
RESULTS: Overall CHIKV incidence was 127 per 100 000 population (range, 0-1125 within districts). The average speed of spread was 70.1 km/wk, with a peak of 228 cases/wk and the basic reproduction number (R0) was 3.1. The highest age-specific incidence rate was 228 per 100 000 in adults aged 50-54 y. Significantly more cases (79.4%) lived in rural areas compared with the general population (46.2%, p<0.0001). Five CHIKV clusters were detected. Likely spread was mostly by road, but a fifth of rural cases were spread by river travel.
CONCLUSIONS: CHIKV initially spread quickly in rural areas mainly via roads, with lesser involvement of urban areas. Delayed spread occurred via river networks to more isolated areas in the rural interior. Understanding the patterns and timings of arboviral outbreak spread may allow targeted vector control measures at key transport hubs or in large transport vehicles.
METHODS: This was a retrospective cohort study of patients in the Malaysian National Dengue Registry of 2013. The outcome measure was dengue-related mortality. Associations between sociodemographic and clinical variables with the outcome were analysed using multivariate analysis.
RESULTS: There were 43 347 cases of which 13081 were serologically confirmed. The mean age was 30.0 years (SD 15.7); 60.2% were male. The incidence of dengue increased towards the later part of the calendar year. There were 92 probable dengue mortalities, of which 41 were serologically confirmed. Multivariate analysis in those with positive serology showed that increasing age (OR 1.03; CI:1.01-1.05), persistent vomiting (OR 13.34; CI: 1.92-92.95), bleeding (OR 5.84; CI 2.17-15.70) and severe plasma leakage (OR 66.68; CI: 9.13-487.23) were associated with mortality. Factors associated with probable dengue mortality were increasing age (OR 1.04; CI:1.03-1.06), female gender (OR 1.53; CI:1.01-2.33), nausea and/or vomiting (OR 1.80; CI:1.17-2.77), bleeding (OR 3.01; CI:1.29-7.04), lethargy and/or restlessness (OR 5.97; CI:2.26-15.78), severe plasma leakage (OR 14.72; CI:1.54-140.70), and shock (OR 1805.37; CI:125.44-25982.98), in the overall study population.
CONCLUSIONS: Older persons and those with persistent vomiting, bleeding or severe plasma leakage, which were associated with mortality, at notification should be monitored closely and referred early if indicated. Doctors and primary care practitioners need to detect patients with dengue early before they develop these severe signs and symptoms.
METHODS: This study is based entirely on the available secondary data sources on dengue in Malaysia. The age-specific incidence of dengue between 2001 and 2013 was estimated using the prevalence and mortality estimates in an incidence-prevalence-mortality (IPM) model. Data on dengue prevalence were extracted from six sero-surveys conducted in Malaysia between 2001 and 2013; while statistics on dengue notification and Case Fatality Rate were derived from National Dengue Surveillance System. Dengue hospitalization data for the years 2009 to 2013 were extracted from the Health Informatics Centre and the volumes of dengue hospitalization for hospitals with missing data were estimated with Poisson models.
RESULTS: The dengue incidence in Malaysia varied from 69.9 to 93.4 per 1000 population (pkp) between 2001 and 2013.The temporal trend in incidence rate was decreasing since 2001. It has been reducing at an average rate of 2.57 pkp per year from 2001 to 2013 (p = 0.011). The age-specific incidence of dengue decreased steadily with dengue incidence reaching zero by age > 70 years. Dengue notification rate has remained stable since 2001 and the number of notified cases each year was only a small fraction of the incident cases (0.7 to 2.3%). Similarly, the dengue hospitalization was larger but still a small fraction of the incident cases (3.0 to 5.6%).
CONCLUSION: Dengue incidence can be estimated with the use of sero-prevalence surveys and mortality data. This study highlights a reducing trend of dengue incidence in Malaysia and demonstrates the discrepancy between true dengue disease burden and cases reported by national surveillance system. Sero-prevalence studies with representative samples should be conducted regularly to allow better estimation of dengue burden in Malaysia.