METHODS: A dataset containing medical records of 809 patients suspected to suffer from ACS was used. For each subject, 266 clinical factors were collected. At first, a feature selection was performed based on interviews with 20 cardiologists; thereby 40 seminal features for classifying ACS were selected. Next, a feature selection algorithm was also applied to detect a subset of the features with the best classification accuracy. As a result, the feature numbers considerably reduced to only seven. Lastly, based on the seven selected features, eight various common pattern recognition tools for classification of ACS were used.
RESULTS: The performance of the aforementioned classifiers was compared based on their accuracy computed from their confusion matrices. Among these methods, the multi-layer perceptron showed the best performance with the 83.2% accuracy.
CONCLUSION: The results reveal that an integrated AI-based feature selection and classification approach is an effective method for the early and accurate classification of ACS and ultimately a timely diagnosis and treatment of this disease.
STUDY DESIGN: Retrospective cohort study.
METHODS: We included 548,830 women from six countries in Asia. The data were sourced from 20 cohorts participating in the Asia Cohort Consortium (ACC) and two additional cohort studies: Japan Multi-institutional Collaborative Cohorts (J-MICC), and Japan Nurse Health Study (JNHS) with data on age at menarche. Joinpoint regression was used to evaluate changes in age at menarche by birth year and by country.
RESULTS: The study includes data from cohorts in six Asian countries namely, China, Iran, Japan, Korea, Malaysia and Singapore. Birth cohorts ranged from 1873 to 1995. The mean age of menarche was 14.0 years with a standard deviation (SD) of 1.4 years, ranged from 12.6 to 15.5 years. Over 100 years age at menarche showed an overall decrease in all six countries. China showed a mixed pattern of decrease, increase, and subsequent decrease from 1926 to 1960. Iran and Malaysia experienced a sharp decline between about 1985 and 1990, with APC values of -4.48 and -1.24, respectively, while Japan, South Korea, and Singapore exhibited a nearly linear decline since the 1980s, notably with an APC of -3.41 in Singapore from 1993 to 1995.
CONCLUSIONS: Overall, we observed a declining age at menarche, while the pace of the change differed by country. Additional long-term observation is needed to examine the contributing factors of differences in trend across Asian countries. The study could serve as a tool to strengthen global health campaigns.
METHODS: Injury mortality was estimated using the GBD mortality database, corrections for garbage coding and CODEm-the cause of death ensemble modelling tool. Morbidity estimation was based on surveys and inpatient and outpatient data sets for 30 cause-of-injury with 47 nature-of-injury categories each. The Socio-demographic Index (SDI) is a composite indicator that includes lagged income per capita, average educational attainment over age 15 years and total fertility rate.
RESULTS: For many causes of injury, age-standardised DALY rates declined with increasing SDI, although road injury, interpersonal violence and self-harm did not follow this pattern. Particularly for self-harm opposing patterns were observed in regions with similar SDI levels. For road injuries, this effect was less pronounced.
CONCLUSIONS: The overall global pattern is that of declining injury burden with increasing SDI. However, not all injuries follow this pattern, which suggests multiple underlying mechanisms influencing injury DALYs. There is a need for a detailed understanding of these patterns to help to inform national and global efforts to address injury-related health outcomes across the development spectrum.
METHODS: In this study, we report and discuss the methods used in GBD 2017 for injury morbidity and mortality burden estimation. In summary, these methods included estimating cause-specific mortality for every cause of injury, and then estimating incidence for every cause of injury. Non-fatal disability for each cause is then calculated based on the probabilities of suffering from different types of bodily injury experienced.
RESULTS: GBD 2017 produced morbidity and mortality estimates for 38 causes of injury. Estimates were produced in terms of incidence, prevalence, years lived with disability, cause-specific mortality, years of life lost and disability-adjusted life-years for a 28-year period for 22 age groups, 195 countries and both sexes.
CONCLUSIONS: GBD 2017 demonstrated a complex and sophisticated series of analytical steps using the largest known database of morbidity and mortality data on injuries. GBD 2017 results should be used to help inform injury prevention policy making and resource allocation. We also identify important avenues for improving injury burden estimation in the future.
METHODS: We reviewed results for injuries from the GBD 2017 study. GBD 2017 measured injury-specific mortality and years of life lost (YLLs) using the Cause of Death Ensemble model. To measure non-fatal injuries, GBD 2017 modelled injury-specific incidence and converted this to prevalence and years lived with disability (YLDs). YLLs and YLDs were summed to calculate disability-adjusted life years (DALYs).
FINDINGS: In 1990, there were 4 260 493 (4 085 700 to 4 396 138) injury deaths, which increased to 4 484 722 (4 332 010 to 4 585 554) deaths in 2017, while age-standardised mortality decreased from 1079 (1073 to 1086) to 738 (730 to 745) per 100 000. In 1990, there were 354 064 302 (95% uncertainty interval: 338 174 876 to 371 610 802) new cases of injury globally, which increased to 520 710 288 (493 430 247 to 547 988 635) new cases in 2017. During this time, age-standardised incidence decreased non-significantly from 6824 (6534 to 7147) to 6763 (6412 to 7118) per 100 000. Between 1990 and 2017, age-standardised DALYs decreased from 4947 (4655 to 5233) per 100 000 to 3267 (3058 to 3505).
INTERPRETATION: Injuries are an important cause of health loss globally, though mortality has declined between 1990 and 2017. Future research in injury burden should focus on prevention in high-burden populations, improving data collection and ensuring access to medical care.
OBJECTIVE: To describe cancer burden for 29 cancer groups in 195 countries from 1990 through 2017 to provide data needed for cancer control planning.
EVIDENCE REVIEW: We used the GBD study estimation methods to describe cancer incidence, mortality, years lived with disability, years of life lost, and disability-adjusted life-years (DALYs). Results are presented at the national level as well as by Socio-demographic Index (SDI), a composite indicator of income, educational attainment, and total fertility rate. We also analyzed the influence of the epidemiological vs the demographic transition on cancer incidence.
FINDINGS: In 2017, there were 24.5 million incident cancer cases worldwide (16.8 million without nonmelanoma skin cancer [NMSC]) and 9.6 million cancer deaths. The majority of cancer DALYs came from years of life lost (97%), and only 3% came from years lived with disability. The odds of developing cancer were the lowest in the low SDI quintile (1 in 7) and the highest in the high SDI quintile (1 in 2) for both sexes. In 2017, the most common incident cancers in men were NMSC (4.3 million incident cases); tracheal, bronchus, and lung (TBL) cancer (1.5 million incident cases); and prostate cancer (1.3 million incident cases). The most common causes of cancer deaths and DALYs for men were TBL cancer (1.3 million deaths and 28.4 million DALYs), liver cancer (572 000 deaths and 15.2 million DALYs), and stomach cancer (542 000 deaths and 12.2 million DALYs). For women in 2017, the most common incident cancers were NMSC (3.3 million incident cases), breast cancer (1.9 million incident cases), and colorectal cancer (819 000 incident cases). The leading causes of cancer deaths and DALYs for women were breast cancer (601 000 deaths and 17.4 million DALYs), TBL cancer (596 000 deaths and 12.6 million DALYs), and colorectal cancer (414 000 deaths and 8.3 million DALYs).
CONCLUSIONS AND RELEVANCE: The national epidemiological profiles of cancer burden in the GBD study show large heterogeneities, which are a reflection of different exposures to risk factors, economic settings, lifestyles, and access to care and screening. The GBD study can be used by policy makers and other stakeholders to develop and improve national and local cancer control in order to achieve the global targets and improve equity in cancer care.