Displaying all 9 publications

Abstract:
Sort:
  1. Salari N, Shohaimi S, Najafi F, Nallappan M, Karishnarajah I
    PLoS One, 2014;9(11):e112987.
    PMID: 25419659 DOI: 10.1371/journal.pone.0112987
    Among numerous artificial intelligence approaches, k-Nearest Neighbor algorithms, genetic algorithms, and artificial neural networks are considered as the most common and effective methods in classification problems in numerous studies. In the present study, the results of the implementation of a novel hybrid feature selection-classification model using the above mentioned methods are presented. The purpose is benefitting from the synergies obtained from combining these technologies for the development of classification models. Such a combination creates an opportunity to invest in the strength of each algorithm, and is an approach to make up for their deficiencies. To develop proposed model, with the aim of obtaining the best array of features, first, feature ranking techniques such as the Fisher's discriminant ratio and class separability criteria were used to prioritize features. Second, the obtained results that included arrays of the top-ranked features were used as the initial population of a genetic algorithm to produce optimum arrays of features. Third, using a modified k-Nearest Neighbor method as well as an improved method of backpropagation neural networks, the classification process was advanced based on optimum arrays of the features selected by genetic algorithms. The performance of the proposed model was compared with thirteen well-known classification models based on seven datasets. Furthermore, the statistical analysis was performed using the Friedman test followed by post-hoc tests. The experimental findings indicated that the novel proposed hybrid model resulted in significantly better classification performance compared with all 13 classification methods. Finally, the performance results of the proposed model was benchmarked against the best ones reported as the state-of-the-art classifiers in terms of classification accuracy for the same data sets. The substantial findings of the comprehensive comparative study revealed that performance of the proposed model in terms of classification accuracy is desirable, promising, and competitive to the existing state-of-the-art classification models.
  2. Najafi F, Abdul Rahman H, Hanafiah M, Momtaz YA, Ahmad Z
    PMID: 23413716
    There is a high rate of unintended pregnancies in Malaysia due to low contraceptive use. Only 30% of married women use modern contraceptive methods. Emergency contraception (EC) is used within a few days of unprotected sex to prevent pregnancy. The purpose of this study was to investigate the knowledge, attitudes, and practices regarding EC pill use among Malay women. A cross sectional study was conducted among married female staff using stratified random sampling from 15 faculties in the Universiti Putra Malaysia (UPM). Data about sociodemographic factors, reproductive health, knowledge, attitudes and practices regarding EC use were gathered using validated self-administered questionnaire. The response rate was 87%. Half the 294 subjects who participated had a low knowledge, 33.0% a moderate knowledge and 17.0% a good knowledge about the EC pill. Eighty-eight percent of respondents had a positive attitude and 12.0% a negative attitude toward EC. Eleven percent of respondents had previously used EC. Unplanned and unwanted pregnancies were reported by 35.0% and 14.0% of respondents, respectively. Most respondents lacked knowledge about the indications for using EC, its mechanism of action, when it can be used and its side effects. Our findings show a need to educate women about EC.
    Study site: 15 faculties in Universiti Putra Malaysia, Serdang. Selangor, Malaysia
  3. Salari N, Shohaimi S, Najafi F, Nallappan M, Karishnarajah I
    Theor Biol Med Model, 2013 Sep 18;10:57.
    PMID: 24044669 DOI: 10.1186/1742-4682-10-57
    OBJECTIVE: The classification of Acute Coronary Syndrome (ACS), using artificial intelligence (AI), has recently drawn the attention of the medical researchers. Using this approach, patients with myocardial infarction can be differentiated from those with unstable angina. The present study aims to develop an integrated model, based on the feature selection and classification, for the automatic classification of ACS.

    METHODS: A dataset containing medical records of 809 patients suspected to suffer from ACS was used. For each subject, 266 clinical factors were collected. At first, a feature selection was performed based on interviews with 20 cardiologists; thereby 40 seminal features for classifying ACS were selected. Next, a feature selection algorithm was also applied to detect a subset of the features with the best classification accuracy. As a result, the feature numbers considerably reduced to only seven. Lastly, based on the seven selected features, eight various common pattern recognition tools for classification of ACS were used.

    RESULTS: The performance of the aforementioned classifiers was compared based on their accuracy computed from their confusion matrices. Among these methods, the multi-layer perceptron showed the best performance with the 83.2% accuracy.

    CONCLUSION: The results reveal that an integrated AI-based feature selection and classification approach is an effective method for the early and accurate classification of ACS and ultimately a timely diagnosis and treatment of this disease.

  4. Jafari H, Shohaimi S, Salari N, Kiaei AA, Najafi F, Khazaei S, et al.
    PLoS One, 2022;17(1):e0262701.
    PMID: 35051240 DOI: 10.1371/journal.pone.0262701
    Anthropometry is a Greek word that consists of the two words "Anthropo" meaning human species and "metery" meaning measurement. It is a science that deals with the size of the body including the dimensions of different parts, the field of motion and the strength of the muscles of the body. Specific individual dimensions such as heights, widths, depths, distances, environments and curvatures are usually measured. In this article, we investigate the anthropometric characteristics of patients with chronic diseases (diabetes, hypertension, cardiovascular disease, heart attacks and strokes) and find the factors affecting these diseases and the extent of the impact of each to make the necessary planning. We have focused on cohort studies for 10047 qualified participants from Ravansar County. Machine learning provides opportunities to improve discrimination through the analysis of complex interactions between broad variables. Among the chronic diseases in this cohort study, we have used three deep neural network models for diagnosis and prognosis of the risk of type 2 diabetes mellitus (T2DM) as a case study. Usually in Artificial Intelligence for medicine tasks, Imbalanced data is an important issue in learning and ignoring that leads to false evaluation results. Also, the accuracy evaluation criterion was not appropriate for this task, because a simple model that is labeling all samples negatively has high accuracy. So, the evaluation criteria of precession, recall, AUC, and AUPRC were considered. Then, the importance of variables in general was examined to determine which features are more important in the risk of T2DM. Finally, personality feature was added, in which individual feature importance was examined. Performing by Shapley Values, the model is tuned for each patient so that it can be used for prognosis of T2DM risk for that patient. In this paper, we have focused and implemented a full pipeline of Data Creation, Data Preprocessing, Handling Imbalanced Data, Deep Learning model, true Evaluation method, Feature Importance and Individual Feature Importance. Through the results, the pipeline demonstrated competence in improving the Diagnosis and Prognosis the risk of T2DM with personalization capability.
  5. Haagsma JA, James SL, Castle CD, Dingels ZV, Fox JT, Hamilton EB, et al.
    Inj Prev, 2020 Oct;26(Supp 1):i12-i26.
    PMID: 31915273 DOI: 10.1136/injuryprev-2019-043296
    BACKGROUND: The epidemiological transition of non-communicable diseases replacing infectious diseases as the main contributors to disease burden has been well documented in global health literature. Less focus, however, has been given to the relationship between sociodemographic changes and injury. The aim of this study was to examine the association between disability-adjusted life years (DALYs) from injury for 195 countries and territories at different levels along the development spectrum between 1990 and 2017 based on the Global Burden of Disease (GBD) 2017 estimates.

    METHODS: Injury mortality was estimated using the GBD mortality database, corrections for garbage coding and CODEm-the cause of death ensemble modelling tool. Morbidity estimation was based on surveys and inpatient and outpatient data sets for 30 cause-of-injury with 47 nature-of-injury categories each. The Socio-demographic Index (SDI) is a composite indicator that includes lagged income per capita, average educational attainment over age 15 years and total fertility rate.

    RESULTS: For many causes of injury, age-standardised DALY rates declined with increasing SDI, although road injury, interpersonal violence and self-harm did not follow this pattern. Particularly for self-harm opposing patterns were observed in regions with similar SDI levels. For road injuries, this effect was less pronounced.

    CONCLUSIONS: The overall global pattern is that of declining injury burden with increasing SDI. However, not all injuries follow this pattern, which suggests multiple underlying mechanisms influencing injury DALYs. There is a need for a detailed understanding of these patterns to help to inform national and global efforts to address injury-related health outcomes across the development spectrum.

  6. James SL, Castle CD, Dingels ZV, Fox JT, Hamilton EB, Liu Z, et al.
    Inj Prev, 2020 Oct;26(Supp 1):i125-i153.
    PMID: 32839249 DOI: 10.1136/injuryprev-2019-043531
    BACKGROUND: While there is a long history of measuring death and disability from injuries, modern research methods must account for the wide spectrum of disability that can occur in an injury, and must provide estimates with sufficient demographic, geographical and temporal detail to be useful for policy makers. The Global Burden of Disease (GBD) 2017 study used methods to provide highly detailed estimates of global injury burden that meet these criteria.

    METHODS: In this study, we report and discuss the methods used in GBD 2017 for injury morbidity and mortality burden estimation. In summary, these methods included estimating cause-specific mortality for every cause of injury, and then estimating incidence for every cause of injury. Non-fatal disability for each cause is then calculated based on the probabilities of suffering from different types of bodily injury experienced.

    RESULTS: GBD 2017 produced morbidity and mortality estimates for 38 causes of injury. Estimates were produced in terms of incidence, prevalence, years lived with disability, cause-specific mortality, years of life lost and disability-adjusted life-years for a 28-year period for 22 age groups, 195 countries and both sexes.

    CONCLUSIONS: GBD 2017 demonstrated a complex and sophisticated series of analytical steps using the largest known database of morbidity and mortality data on injuries. GBD 2017 results should be used to help inform injury prevention policy making and resource allocation. We also identify important avenues for improving injury burden estimation in the future.

  7. Burstein R, Henry NJ, Collison ML, Marczak LB, Sligar A, Watson S, et al.
    Nature, 2019 Oct;574(7778):353-358.
    PMID: 31619795 DOI: 10.1038/s41586-019-1545-0
    Since 2000, many countries have achieved considerable success in improving child survival, but localized progress remains unclear. To inform efforts towards United Nations Sustainable Development Goal 3.2-to end preventable child deaths by 2030-we need consistently estimated data at the subnational level regarding child mortality rates and trends. Here we quantified, for the period 2000-2017, the subnational variation in mortality rates and number of deaths of neonates, infants and children under 5 years of age within 99 low- and middle-income countries using a geostatistical survival model. We estimated that 32% of children under 5 in these countries lived in districts that had attained rates of 25 or fewer child deaths per 1,000 live births by 2017, and that 58% of child deaths between 2000 and 2017 in these countries could have been averted in the absence of geographical inequality. This study enables the identification of high-mortality clusters, patterns of progress and geographical inequalities to inform appropriate investments and implementations that will help to improve the health of all populations.
  8. James SL, Castle CD, Dingels ZV, Fox JT, Hamilton EB, Liu Z, et al.
    Inj Prev, 2020 10;26(Supp 1):i96-i114.
    PMID: 32332142 DOI: 10.1136/injuryprev-2019-043494
    BACKGROUND: Past research in population health trends has shown that injuries form a substantial burden of population health loss. Regular updates to injury burden assessments are critical. We report Global Burden of Disease (GBD) 2017 Study estimates on morbidity and mortality for all injuries.

    METHODS: We reviewed results for injuries from the GBD 2017 study. GBD 2017 measured injury-specific mortality and years of life lost (YLLs) using the Cause of Death Ensemble model. To measure non-fatal injuries, GBD 2017 modelled injury-specific incidence and converted this to prevalence and years lived with disability (YLDs). YLLs and YLDs were summed to calculate disability-adjusted life years (DALYs).

    FINDINGS: In 1990, there were 4 260 493 (4 085 700 to 4 396 138) injury deaths, which increased to 4 484 722 (4 332 010 to 4 585 554) deaths in 2017, while age-standardised mortality decreased from 1079 (1073 to 1086) to 738 (730 to 745) per 100 000. In 1990, there were 354 064 302 (95% uncertainty interval: 338 174 876 to 371 610 802) new cases of injury globally, which increased to 520 710 288 (493 430 247 to 547 988 635) new cases in 2017. During this time, age-standardised incidence decreased non-significantly from 6824 (6534 to 7147) to 6763 (6412 to 7118) per 100 000. Between 1990 and 2017, age-standardised DALYs decreased from 4947 (4655 to 5233) per 100 000 to 3267 (3058 to 3505).

    INTERPRETATION: Injuries are an important cause of health loss globally, though mortality has declined between 1990 and 2017. Future research in injury burden should focus on prevention in high-burden populations, improving data collection and ensuring access to medical care.

  9. Global Burden of Disease Cancer Collaboration, Fitzmaurice C, Abate D, Abbasi N, Abbastabar H, Abd-Allah F, et al.
    JAMA Oncol, 2019 Dec 01;5(12):1749-1768.
    PMID: 31560378 DOI: 10.1001/jamaoncol.2019.2996
    IMPORTANCE: Cancer and other noncommunicable diseases (NCDs) are now widely recognized as a threat to global development. The latest United Nations high-level meeting on NCDs reaffirmed this observation and also highlighted the slow progress in meeting the 2011 Political Declaration on the Prevention and Control of Noncommunicable Diseases and the third Sustainable Development Goal. Lack of situational analyses, priority setting, and budgeting have been identified as major obstacles in achieving these goals. All of these have in common that they require information on the local cancer epidemiology. The Global Burden of Disease (GBD) study is uniquely poised to provide these crucial data.

    OBJECTIVE: To describe cancer burden for 29 cancer groups in 195 countries from 1990 through 2017 to provide data needed for cancer control planning.

    EVIDENCE REVIEW: We used the GBD study estimation methods to describe cancer incidence, mortality, years lived with disability, years of life lost, and disability-adjusted life-years (DALYs). Results are presented at the national level as well as by Socio-demographic Index (SDI), a composite indicator of income, educational attainment, and total fertility rate. We also analyzed the influence of the epidemiological vs the demographic transition on cancer incidence.

    FINDINGS: In 2017, there were 24.5 million incident cancer cases worldwide (16.8 million without nonmelanoma skin cancer [NMSC]) and 9.6 million cancer deaths. The majority of cancer DALYs came from years of life lost (97%), and only 3% came from years lived with disability. The odds of developing cancer were the lowest in the low SDI quintile (1 in 7) and the highest in the high SDI quintile (1 in 2) for both sexes. In 2017, the most common incident cancers in men were NMSC (4.3 million incident cases); tracheal, bronchus, and lung (TBL) cancer (1.5 million incident cases); and prostate cancer (1.3 million incident cases). The most common causes of cancer deaths and DALYs for men were TBL cancer (1.3 million deaths and 28.4 million DALYs), liver cancer (572 000 deaths and 15.2 million DALYs), and stomach cancer (542 000 deaths and 12.2 million DALYs). For women in 2017, the most common incident cancers were NMSC (3.3 million incident cases), breast cancer (1.9 million incident cases), and colorectal cancer (819 000 incident cases). The leading causes of cancer deaths and DALYs for women were breast cancer (601 000 deaths and 17.4 million DALYs), TBL cancer (596 000 deaths and 12.6 million DALYs), and colorectal cancer (414 000 deaths and 8.3 million DALYs).

    CONCLUSIONS AND RELEVANCE: The national epidemiological profiles of cancer burden in the GBD study show large heterogeneities, which are a reflection of different exposures to risk factors, economic settings, lifestyles, and access to care and screening. The GBD study can be used by policy makers and other stakeholders to develop and improve national and local cancer control in order to achieve the global targets and improve equity in cancer care.

Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links