Displaying all 17 publications

  1. Fallahiarezoodar A, Abdul Kadir MR, Alizadeh M, Naveen SV, Kamarul T
    Knee Surg Sports Traumatol Arthrosc, 2014 Dec;22(12):3019-27.
    PMID: 25149643 DOI: 10.1007/s00167-014-3227-7
    PURPOSE: Reproducing the femoral rollback through specially designed mechanism in knee implants is required to achieve full knee function in total knee arthroplasty. Most contemporary implants use cam/post mechanism to replace the function of Posterior Cruciate Ligament. This study was aimed to determine the most appropriate cam and post designs to produce normal femoral rollback of the knee.

    METHODS: Three different cams (triangle, ellipse, and circle) and three different posts (straight, convex, concave) geometries were considered in this study and were analysed using kinematic analyses. Femoral rollback did not occur until reaching 50° of knee flexion. Beyond this angle, two of the nine combinations demonstrate poor knee flexion and were eliminated from the study.

    RESULTS: The combination of circle cam with concave post, straight post and convex post showed 15.6, 15.9 and 16.1 mm posterior translation of the femur, respectively. The use of ellipse cam with convex post and straight post demonstrated a 15.3 and 14.9 mm femoral rollback, whilst the combination of triangle cam with convex post and straight post showed 16.1 and 15.8 mm femoral rollback, respectively.

    CONCLUSION: The present study demonstrates that the use of circle cam and convex post created the best femoral rollback effect which in turn produces the highest amount of knee flexion. The findings of the study suggest that if the design is applied for knee implants, superior knee flexion may be possible for future patients.


  2. Murali MR, Naveen SV, Son CG, Raghavendran HRB
    Integr Med Res, 2014 Sep;3(3):111-118.
    PMID: 28664086 DOI: 10.1016/j.imr.2014.04.001
    Helicobacter pylori, a spiral-shaped Gram-negative bacterium, has been classified as a class I carcinogen by the World Health Organization and recognized as the causative agent for peptic ulcers, duodenal ulcer, gastritis, mucosa-associated lymphoid tissue lymphomas, and gastric cancer. Owing to their alarming rate of drug resistance, eradication of H. pylori remains a global challenge. Triple therapy consisting of a proton pump inhibitor, clarithromycin, and either amoxicillin or metronidazole, is generally the recommended standard for the treatment of H. pylori infection. Complementary and alternative medicines have a long history in the treatment of gastrointestinal ailments and various compounds has been tested for anti-H. pylori activity both in vitro and in vivo; however, their successful use in human clinical trials is sporadic. Hence, the aim of this review is to analyze the role of some well-known natural products that have been tested in clinical trials in preventing, altering, or treating H. pylori infections. Whereas some in vitro and in vivo studies in the literature have demonstrated the successful use of a few potential natural products for the treatment of H. pylori-related infections, others indicate a need to consider natural products, with or without triple therapy, as a useful alternative in treating H. pylori-related infections. Thus, the reported mechanisms include killing of H. pylori urease inhibition, induction of bacterial cell damage, and immunomodulatory effect on the host immune system. Furthermore, both in vitro and in vivo studies have demonstrated the successful use of some potential natural products for the treatment of H. pylori-related infections. Nevertheless, the routine prescription of potential complementary and alternative medicines continues to be restrained, and evidence on the safety and efficacy of the active compounds remains a subject of ongoing debate.
  3. Raghavendran HR, Mohan S, Genasan K, Murali MR, Naveen SV, Talebian S, et al.
    Colloids Surf B Biointerfaces, 2016 Mar 1;139:68-78.
    PMID: 26700235 DOI: 10.1016/j.colsurfb.2015.11.053
    Scaffolds with structural features similar to the extracellular matrix stimulate rapid osteogenic differentiation in favorable microenvironment and with growth factor supplementation. In this study, the osteogenic potential of electrospun poly-l-lactide/hydroxyapatite/collagen (PLLA/Col/HA, PLLA/HA and PLLA/Col) scaffolds were tested in vitro with the supplementation of platelet derived growth factor-BB (PDGF-BB). Cell attachment and topography, mineralization, extracellular matrix protein localization, and gene expression of the human mesenchymal stromal cells were compared between the fibrous scaffolds PLLA/Col/HA, PLLA/Col, and PLLA/HA. The levels of osteocalcin, calcium, and mineralization were significantly greater in the PLLA/Col/HA and PLLA/HA compared with PLLA/Col. High expression of fibronectin, intracellular adhesion molecule, cadherin, and collagen 1 (Col1) suggests that PLLA/Col/HA and PLLA/HA scaffolds had superior osteoinductivity than PLLA/Col. Additionally, osteopontin, osteocalcin, osterix, Runt-related transcription factor 2 (Runx2), and bone morphogenic protein (BMP2) expression were higher in PLLA/Col/HA and PLLA/HA compared with PLLA/Col. In comparison with PLLA/Col, the PLLA/Col/HA and PLLA/HA scaffolds presented a significant upregulation of the genes Runx2, Col 1, Integrin, osteonectin (ON), bone gamma-carboxyglutamic acid-containing protein (BGALP), osteopontin (OPN), and BMP2. The upregulation of these genes was further increased with PDGF-BB supplementation. These results show that PDGF-BB acts synergistically with PLLA/Col/HA and PLLA/HA to enhance the osteogenic differentiation potential. Therefore, this combination can be used for the rapid expansion of bone marrow stromal cells into bone-forming cells for tissue engineering.
  4. Shani S, Ahmad RE, Naveen SV, Murali MR, Puvanan K, Abbas AA, et al.
    ScientificWorldJournal, 2014;2014:845293.
    PMID: 25436230 DOI: 10.1155/2014/845293
    Platelet rich concentrate (PRC) is a natural adjuvant that aids in human mesenchymal stromal cell (hMSC) proliferation in vitro; however, its role requires further exploration. This study was conducted to determine the optimal concentration of PRC required for achieving the maximal proliferation, and the need for activating the platelets to achieve this effect, and if PRC could independently induce early differentiation of hMSC. The gene expression of markers for osteocytes (ALP, RUNX2), chondrocytes (SOX9, COL2A1), and adipocytes (PPAR-γ) was determined at each time point in hMSC treated with 15% activated and nonactivated PRC since maximal proliferative effect was achieved at this concentration. The isolated PRC had approximately fourfold higher platelet count than whole blood. There was no significant difference in hMSC proliferation between the activated and nonactivated PRC. Only RUNX2 and SOX9 genes were upregulated throughout the 8 days. However, protein expression study showed formation of oil globules from day 4, significant increase in ALP at days 6 and 8 (P ≤ 0.05), and increased glycosaminoglycan levels at all time points (P < 0.05), suggesting the early differentiation of hMSC into osteogenic and adipogenic lineages. This study demonstrates that the use of PRC increased hMSC proliferation and induced early differentiation of hMSC into multiple mesenchymal lineages, without preactivation or addition of differentiation medium.
  5. Naveen SV, Ahmad RE, Hui WJ, Suhaeb AM, Murali MR, Shanmugam R, et al.
    Int J Med Sci, 2014;11(1):97-105.
    PMID: 24396291 DOI: 10.7150/ijms.6964
    Monosodium -iodoacetate (MIA)-induced animal model of osteoarthritis (OA) is under-utilised despite having many inherent advantages. At present, there is lack of studies that directly compare the degenerative changes induced by MIA with the surgical osteoarthritis induction method and human osteoarthritis, which would further verify a greater use of this model. Therefore, we compared the histological, biochemical and biomechanical characteristics in rat model using MIA against the anterior cruciate ligament transection (ACLT) and human cartilage with clinically established osteoarthritis. The right knees of Sprague-Dawley rats were subjected to either MIA or ACLT (n=18 in each group). Six rats were used as controls. Human cartilage samples were collected and compared from patients clinically diagnosed with (n=7) and without osteoarthritis (n=3). Histological, biochemical (Glycosaminoglycans/total protein) and biomechanical (cartilage stiffness) evaluations were performed at the end of the 1(st) and 2(nd) week after OA induction. For human samples, evaluations were performed at the time of sampling. Histopathological changes in the MIA group were comparable to that observed in the ACLT group and human OA. The Mankin scores of the 3 groups were comparable (MIA: 11.5 ± 1.0; ACLT: 10.1 ± 1.1; human OA: 13.2 ± 0.8). Comparable reduction in Glycosaminoglycan/total protein content in the intervention groups were observed (MIA: 7 ± 0.6; ACLT: 6.6 ± 0.5; human OA: 3.1 ± 0.7). Cartilage stiffness score were 24.2 ± 15.3 Mpa for MIA, 25.3 ± 4.8 for ACLT and 0.5 ± 0.0 Mpa for human OA. The MIA model produces comparable degenerative changes to ACLT and human OA with the advantage of being rapid, minimally invasive and reproducible. Therefore, wider utilisation of MIA as animal translational OA model should perhaps be advocated.
  6. Ibrahim MR, Singh S, Merican AM, Raghavendran HR, Murali MR, Naveen SV, et al.
    BMC Vet Res, 2016 Jun 16;12(1):112.
    PMID: 27307015 DOI: 10.1186/s12917-016-0724-6
    Fracture healing in bone gap is one of the major challenges encountered in Orthopedic Surgery. At present, the treatment includes bone graft, employing either internal or external fixation which has a significant impact on the patient, family and even society. New drugs are emerging in the markets such as anabolic bone-forming agents including teriparatide and strontium ranelate to stimulate bone growth. Based on the mechanism of their actions, we embarked on a study on the healing of a fractured ulna with bone gap in a rabbit model. We segregated ten rabbits into two groups: five rabbits in the test group and five rabbits in the control group. We created a 5 mm bone gap in the ulna bone, removing the periosteum as well. Rabbits in the test group received 450 mg/kg of strontium ranelate via oral administration, daily, for six weeks. The x-rays, CT scans and blood tests were performed every two weeks. At the end of six weeks, the rabbits were sacrificed, and the radius and ulna bones harvested for histopathological examination.
  7. Chadda H, Naveen SV, Mohan S, Satapathy BK, Ray AR, Kamarul T
    J Prosthet Dent, 2016 Jul;116(1):129-35.
    PMID: 26873771 DOI: 10.1016/j.prosdent.2015.12.013
    STATEMENT OF PROBLEM: Although the physical and mechanical properties of hydroxyapatite-filled dental restorative composite resins have been examined, the biocompatibility of these materials has not been studied in detail.

    PURPOSE: The purpose of this in vitro study was to analyze the toxicity of acrylate-based restorative composite resins filled with hydroxyapatite and a silica/hydroxyapatite combination.

    MATERIAL AND METHODS: Five different restorative materials based on bisphenol A-glycidyl methacrylate (bis-GMA) and tri-ethylene glycol dimethacrylate (TEGDMA) were developed: unfilled (H0), hydroxyapatite-filled (H30, H50), and silica/hydroxyapatite-filled (SH30, SH50) composite resins. These were tested for in vitro cytotoxicity by using human bone marrow mesenchymal stromal cells. Surface morphology, elemental composition, and functional groups were determined by scanning electron microscopy (SEM), energy-dispersive x-ray spectroscopy (EDX), and Fourier-transformed infrared spectroscopy (FTIR). The spectra normalization, baseline corrections, and peak integration were carried out by OPUS v4.0 software.

    RESULTS: Both in vitro cytotoxicity results and SEM analysis indicated that the composite resins developed were nontoxic and supported cell adherence. Elemental analysis with EDX revealed the presence of carbon, oxygen, calcium, silicon, and gold, while the presence of methacrylate, hydroxyl, and methylene functional groups was confirmed through FTIR analysis.

    CONCLUSIONS: The characterization and compatibility studies showed that these hydroxyapatite-filled and silica/hydroxyapatite-filled bis-GMA/TEGDMA-based restorative composite resins are nontoxic to human bone marrow mesenchymal stromal cells and show a favorable biologic response, making them potential biomaterials.

  8. Samuel S, Ahmad RE, Ramasamy TS, Karunanithi P, Naveen SV, Kamarul T
    Platelets, 2019;30(1):66-74.
    PMID: 29090639 DOI: 10.1080/09537104.2017.1371287
    Platelet-rich concentrate (PRC), used in conjunction with other chondroinductive growth factors, have been shown to induce chondrogenesis of human mesenchymal stromal cells (hMSC) in pellet culture. However, pellet culture systems promote cell hypertrophy and the presence of other chondroinductive growth factors in the culture media used in previous studies obscures accurate determination of the effect of platelet itself in inducing chondrogenic differentiation. Hence, this study aimed to investigate the effect of PRC alone in enhancing the chondrogenic differentiation potential of human mesenchymal stromal cells (hMSC) encapsulated in three-dimensional alginate constructs. Cells encapsulated in alginate were cultured in serum-free medium supplemented with only 15% PRC. Scanning electron microscopy was used to determine the cell morphology. Chondrogenic molecular signature of hMSCs was determined by quantitative real-time PCR and verified at protein levels via immunohistochemistry and enzyme-linked immunosorbent assay. Results showed that the cells cultured in the presence of PRC for 24 days maintained a chondrocytic phenotype and demonstrated minimal upregulation of cartilaginous extracellular matrix (ECM) marker genes (SOX9, TNC, COL2, ACAN, COMP) and reduced expression of chondrocyte hypertrophy genes (Col X, Runx2) compared to the standard chondrogenic medium (p 
  9. Zeimaran E, Pourshahrestani S, Pingguan-Murphy B, Kong D, Naveen SV, Kamarul T, et al.
    Carbohydr Polym, 2017 Nov 01;175:618-627.
    PMID: 28917909 DOI: 10.1016/j.carbpol.2017.08.038
    Blends of poly (1, 8-octanediol citrate) (POC) and chitosan (CS) were prepared through solution casting technique. Films with different component fractions (POC/CS: 100/0, 90/10, 80/20, 70/30, 60/40, and 0/100) were successfully prepared and characterized for their mechanical, thermal, structural and morphological properties as well as biocompatibility. The incorporation of CS to POC significantly increased tensile strength and elastic modulus and presented limited influences on pH variation which is important to the biocompatibility of biomaterial implants. The assessment of surface topography indicated that blending could enhance and control the surface roughness of the pure films. POC/CS blends well-supported human dermal fibroblast cells attachment and proliferation, and thus can be used for a range of tissue engineering applications.
  10. Pourshahrestani S, Zeimaran E, Adib Kadri N, Gargiulo N, Samuel S, Naveen SV, et al.
    J Mater Chem B, 2016 Jan 07;4(1):71-86.
    PMID: 32262810 DOI: 10.1039/c5tb02062j
    Haemorrhage remains the leading cause of potentially survivable death in both military and civilian populations. Although a large variety of hemostatic agents have been developed, many of them have an inadequate capacity to induce hemostasis and are not effective in killing bacteria. In recent years, mesoporous bioactive glasses (MBGs) were found to be effective in inducing hemostasis. However, the materials may not be considered as ideal hemostats since they do not offer antimicrobial activity. The gallium ion (Ga+3) not only exhibits antibacterial properties but also accelerates the blood coagulation cascade. The aim of this study was to develop MBGs containing various concentrations of Ga2O3 (1, 2 & 3 mol%) via the evaporation-induced self-assembly (EISA) process and investigate whether the addition of Ga3+ would induce both hemostatic and antibacterial effects. The results indicated that the incorporation of lower Ga2O3 content (1 mol%) into the MBG system improved structural properties including the specific surface area, mesopore size and pore volume as well as the release of silicon and calcium ions. The bioactive glass was found to stimulate blood coagulation, platelet adhesion and thrombus generation and exerted an antibacterial effect against both Escherichia coli and Staphylococcus aureus. Likewise, Ga-doped MBGs showed excellent cytocompatibility even after 3 days, with the 1% Ga2O3-containing MBG attaining the best biocompatibility that render them safe hemostatic agents for stopping bleeding. This study demonstrated that the lowest Ga2O3-substituted MBG can be a potent candidate for controlling haemorrhage and wound infection.
  11. Balaji Raghavendran HR, Puvaneswary S, Talebian S, Murali MR, Raman Murali M, Naveen SV, et al.
    PLoS One, 2014;9(8):e104389.
    PMID: 25140798 DOI: 10.1371/journal.pone.0104389
    A comparative study on the in vitro osteogenic potential of electrospun poly-L-lactide/hydroxyapatite/collagen (PLLA/HA/Col, PLLA/HA, and PLLA/Col) scaffolds was conducted. The morphology, chemical composition, and surface roughness of the fibrous scaffolds were examined. Furthermore, cell attachment, distribution, morphology, mineralization, extracellular matrix protein localization, and gene expression of human mesenchymal stromal cells (hMSCs) differentiated on the fibrous scaffolds PLLA/Col/HA, PLLA/Col, and PLLA/HA were also analyzed. The electrospun scaffolds with a diameter of 200-950 nm demonstrated well-formed interconnected fibrous network structure, which supported the growth of hMSCs. When compared with PLLA/H%A and PLLA/Col scaffolds, PLLA/Col/HA scaffolds presented a higher density of viable cells and significant upregulation of genes associated with osteogenic lineage, which were achieved without the use of specific medium or growth factors. These results were supported by the elevated levels of calcium, osteocalcin, and mineralization (P<0.05) observed at different time points (0, 7, 14, and 21 days). Furthermore, electron microscopic observations and fibronectin localization revealed that PLLA/Col/HA scaffolds exhibited superior osteoinductivity, when compared with PLLA/Col or PLLA/HA scaffolds. These findings indicated that the fibrous structure and synergistic action of Col and nano-HA with high-molecular-weight PLLA played a vital role in inducing osteogenic differentiation of hMSCs. The data obtained in this study demonstrated that the developed fibrous PLLA/Col/HA biocomposite scaffold may be supportive for stem cell based therapies for bone repair, when compared with the other two scaffolds.
  12. Samuel S, Ahmad RE, Ramasamy TS, Karunanithi P, Naveen SV, Murali MR, et al.
    PeerJ, 2016;4:e2347.
    PMID: 27651984 DOI: 10.7717/peerj.2347
    Previous studies have shown that platelet concentrates used in conjunction with appropriate growth media enhance osteogenic differentiation of human mesenchymal stromal cells (hMSCs). However, their potential in inducing osteogenesis of hMSCs when cultured in serum free medium has not been explored. Furthermore, the resulting osteogenic molecular signatures of the hMSCs have not been compared to standard osteogenic medium. We studied the effect of infrequent supplementation (8-day interval) of 15% non-activated platelet-rich concentrate (PRC) in serum free medium on hMSCs proliferation and differentiation throughout a course of 24 days, and compared the effect with those cultured in a standard osteogenic medium (OM). Cell proliferation was analyzed by alamar blue assay. Gene expression of osteogenic markers (Runx2, Collagen1, Alkaline Phosphatase, Bone morphogenetic protein 2, Osteopontin, Osteocalcin, Osteonectin) were analyzed using Q-PCR. Immunocytochemical staining for osteocalcin, osteopontin and transcription factor Runx2 were done at 8, 16 and 24 days. Biochemical assays for the expression of ALP and osteocalcin were also performed at these time-points. Osteogenic differentiation was further confirmed qualitatively by Alizarin Red S staining that was quantified using cetylpyridinium chloride. Results showed that PRC supplemented in serum free medium enhanced hMSC proliferation, which peaked at day 16. The temporal pattern of gene expression of hMSCs under the influence of PRC was comparable to that of the osteogenic media, but at a greater extent at specific time points. Immunocytochemical staining revealed stronger staining for Runx2 in the PRC-treated group compared to OM, while the staining for Osteocalcin and Osteopontin were comparable in both groups. ALP activity and Osteocalcin/DNA level were higher in the PRC group. Cells in the PRC group had similar level of bone mineralization as those cultured in OM, as reflected by the intensity of Alizarin red stain. Collectively, these results demonstrate a great potential of PRC alone in inducing proliferation of hMSCs without any influence from other lineage-specific growth media. PRC alone has similar capacity to enhance hMSC osteogenic differentiation as a standard OM, without changing the temporal profile of the differentiation process. Thus, PRC could be used as a substitute medium to provide sufficient pool of pre-differentiated hMSCs for potential clinical application in bone regeneration.
  13. Mohan S, Raghavendran HB, Karunanithi P, Murali MR, Naveen SV, Talebian S, et al.
    ACS Appl Mater Interfaces, 2017 Mar 22;9(11):9291-9303.
    PMID: 28266827 DOI: 10.1021/acsami.6b13422
    Tissue engineering aims to generate or facilitate regrowth or healing of damaged tissues by applying a combination of biomaterials, cells, and bioactive signaling molecules. In this regard, growth factors clearly play important roles in regulating cellular fate. However, uncontrolled release of growth factors has been demonstrated to produce severe side effects on the surrounding tissues. In this study, poly(lactic-co-glycolic acid) (PLGA) microspheres (MS) incorporated three-dimensional (3D) CORAGRAF scaffolds were engineered to achieve controlled release of platelet-derived growth factor-BB (PDGF-BB) for the differentiation of stem cells within the 3D polymer network. Fourier transform infrared spectroscopy, energy-dispersive X-ray spectroscopy, scanning electron microscopy, and microtomography were applied to characterize the fabricated scaffolds. In vitro study revealed that the CORAGRAF-PLGA-PDGF-BB scaffold system enhanced the release of PDGF-BB for the regulation of cell behavior. Stromal cell attachment, viability, release of osteogenic differentiation markers such as osteocalcin, and upregulation of osteogenic gene expression exhibited positive response. Overall, the developed scaffold system was noted to support rapid cell expansion and differentiation of stromal cells into osteogenic cells in vitro for bone tissue engineering applications.
  14. Pourshahrestani S, Zeimaran E, Kadri NA, Gargiulo N, Jindal HM, Naveen SV, et al.
    ACS Appl Mater Interfaces, 2017 Sep 20;9(37):31381-31392.
    PMID: 28836753 DOI: 10.1021/acsami.7b07769
    Chitosan-based hemostats are promising candidates for immediate hemorrhage control. However, they have some disadvantages and require further improvement to achieve the desired hemostatic efficiency. Here, a series of 1% Ga2O3-containing mesoporous bioactive glass-chitosan composite scaffolds (Ga-MBG/CHT) were constructed by the lyophilization process and the effect of various concentrations of Ga-MBG (10, 30, and 50 wt %) on the hemostatic function of the CHT scaffold was assessed as compared to that of Celox Rapid gauze (CXR), a current commercially available chitosan-coated hemostatic gauze. The prepared scaffolds exhibited >79% porosity and showed increased water uptake compared to that in CXR. The results of coagulation studies showed that pure CHT and composite scaffolds exhibited increased hemostatic performance with respect to CXR. Furthermore, the composite scaffold with the highest Ga-MBG content (50 wt %) had increased capability to enhancing thrombus generation, blood clotting, and platelet adhesion and aggregation than that of the scaffold made of pure CHT. The antibacterial efficacy and biocompatibility of the prepared scaffolds were also assessed by a time-killing assay and an Alamar Blue assay, respectively. Our results show that the antibacterial effect of 50% Ga-MBG/CHT was more pronounced than that of CHT and CXR. The cell viability results also demonstrated that Ga-MBG/CHT composite scaffolds had good biocompatibility, which facilitates the spreading and proliferation of human dermal fibroblast cells even with 50 wt % Ga-MBG loading. These results suggest that Ga-MBG/CHT scaffolds could be a promising hemostatic candidate for improving hemostasis in critical situations.
  15. Pourshahrestani S, Kadri NA, Zeimaran E, Gargiulo N, Samuel S, Naveen SV, et al.
    Biomed Mater, 2018 02 08;13(2):025020.
    PMID: 29148431 DOI: 10.1088/1748-605X/aa9b3e
    Mesoporous bioactive glass containing 1% Ga2O3 (1%Ga-MBG) is attractive for hemorrhage control because of its surface chemistry which can promote blood-clotting. The present study compares this proprietary inorganic coagulation accelerator with two commercial hemostats, CeloxTM (CX) and QuikClot Advanced Clotting Sponge PlusTM (ACS+). The results indicate that the number of adherent platelets were higher on the 1%Ga-MBG and CX surfaces than ACS+ whereas a greater contact activation was seen on 1%Ga-MBG and ACS+ surfaces than CX. 1%Ga-MBG not only resulted in larger platelet aggregates and more extensive platelet pseudopodia compared to CX and ACS+ but also significantly accelerated the intrinsic pathways of the clotting cascade. In vitro thrombin generation assays also showed that CX and ACS+ induced low levels of thrombin formation while 1%Ga-MBG had significantly higher values. 1%Ga-MBG formed a larger red blood cell aggregate than both CX and ACS+. Direct exposure of 1%Ga-MBG to fibroblast cells increased cell viability after 3 days relative to CX and ACS+, inferring excellent cytocompatibility. The results of this study promote 1%Ga-MBG as a promising hemostat compared to the commercially available products as it possesses essential factors required for coagulation activation.
  16. Zeimaran E, Pourshahrestani S, Kadri NA, Kong D, Shirazi SFS, Naveen SV, et al.
    Macromol Biosci, 2019 Oct;19(10):e1900176.
    PMID: 31441595 DOI: 10.1002/mabi.201900176
    Stretchable self-healing urethane-based biomaterials have always been crucial for biomedical applications; however, the strength is the main constraint of utilization of these healable materials. Here, a series of novel, healable, elastomeric, supramolecular polyester urethane nanocomposites of poly(1,8-octanediol citrate) and hexamethylene diisocyanate reinforced with cellulose nanocrystals (CNCs) are introduced. Nanocomposites with various amounts of CNCs from 10 to 50 wt% are prepared using solvent casting technique followed by the evaluation of their microstructural features, mechanical properties, healability, and biocompatibility. The synthesized nanocomposites indicate significantly higher tensile modulus (approximately 36-500-fold) in comparison to the supramolecular polymer alone. Upon exposure to heat, the materials can reheal, but nevertheless when the amount of CNC is greater than 10 wt%, the self-healing ability of nanocomposites is deteriorated. These materials are capable of rebonding ruptured parts and fully restoring their mechanical properties. In vitro cytotoxicity test of the nanocomposites using human dermal fibroblasts confirms their good cytocompatibility. The optimized structure, self-healing attributes, and noncytotoxicity make these nanocomposites highly promising for tissue engineering and other biomedical applications.
  17. Pourshahrestani S, Zeimaran E, Kadri NA, Gargiulo N, Jindal HM, Hasikin K, et al.
    Mater Sci Eng C Mater Biol Appl, 2019 May;98:1022-1033.
    PMID: 30812986 DOI: 10.1016/j.msec.2019.01.022
    A novel series of silver-doped mesoporous bioactive glass/poly(1,8-octanediol citrate) (AgMBG/POC) elastomeric biocomposite scaffolds were successfully constructed by a salt-leaching technique for the first time and the effect of inclusion of different AgMBG contents (5, 10, and 20 wt%) on physicochemical and biological properties of pure POC elastomer was evaluated. Results indicated that AgMBG particles were uniformly dispersed in the POC matrix and increasing the AgMBG concentration into POC matrix up to 20 wt% enhanced thermal behaviour, mechanical properties and water uptake ability of the composite scaffolds compared to those from POC. The 20%AgMBG/POC additionally showed higher degradation rate in Tris(hydroxymethyl)-aminomethane-HCl (Tris-HCl) compared with pure POC and lost about 26% of its initial weight after soaking for 28 days. The AgMBG phase incorporation also significantly endowed the resulting composite scaffolds with efficient antibacterial properties against Escherichia coli and Staphylococcus aureus bacteria while preserving their favorable biocompatibility with soft tissue cells (i.e., human dermal fibroblast cells). Taken together, our results suggest that the synergistic effect of both AgMBG and POC make these newly designed AgMBG/POC composite scaffold an attractive candidate for soft tissue engineering applications.
Related Terms
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links