Displaying publications 1 - 20 of 22 in total

Abstract:
Sort:
  1. Duraisamy N, Numan A, Fatin SO, Ramesh K, Ramesh S
    J Colloid Interface Sci, 2016 Jun 01;471:136-144.
    PMID: 26995554 DOI: 10.1016/j.jcis.2016.03.013
    In this work, we demonstrate the influence of nickel oxides with divergent particle sizes as the working electrodes for supercapacitor application. The nanostructured nickel oxide (NiO) is synthesized via facile sonochemical method, followed by calcination process. The crystallinity and surface purity of prepared samples are clearly examined by X-ray diffraction and Raman analysis. NiO crystallinity is significantly increased with increasing calcination temperatures. The surface analysis confirmed that the calcination at 250°C exhibited nanoclutser like NiO with average particle size of ∼6nm. While increasing the calcination temperature beyond 250°C, hexagonal shaped NiO is observed with enhanced particle sizes. The electrochemical performance confirmed the good redox behavior of NiO electrodes. Moreover, NiO with average particle size of ∼6nm exhibited high specific capacitance of 449F/g at a scan rate of 5mV/s compared to other samples with particle sizes of ∼21nm (323F/g) and ∼41nm (63F/g). This is due to the good ion transfer mechanism and effective electrochemical utilization of the working electrode.
  2. Anwar A, Numan A, Siddiqui R, Khalid M, Khan NA
    Parasit Vectors, 2019 Jun 03;12(1):280.
    PMID: 31159839 DOI: 10.1186/s13071-019-3528-2
    BACKGROUND: Species of Acanthamoeba are facultative pathogens which can cause sight threatening Acanthamoeba keratitis and a rare but deadly brain infection, granulomatous amoebic encephalitis. Due to conversion of Acanthamoeba trophozoites to resistant cyst stage, most drugs are found to be ineffective at preventing recurrence of infection. This study was designed to test the antiacanthamoebic effects of different cobalt nanoparticles (CoNPs) against trophozoites and cysts, as well as parasite-mediated host cell cytotoxicity.

    METHODS: Three different varieties of CoNPs were synthesized by utilizing hydrothermal and ultrasonication methods and were thoroughly characterized by X-ray diffraction and field emission scanning electron microscopy. Amoebicidal, encystation, excystation, and host cell cytopathogenicity assays were conducted to study the antiacanthamoebic effects of CoNPs.

    RESULTS: The results of the antimicrobial evaluation revealed that cobalt phosphate Co3(PO4)2 hexagonal microflakes, and 100 nm large cobalt hydroxide (Co(OH)2) nanoflakes showed potent amoebicidal activity at 100 and 10 µg/ml against Acanthamoeba castellanii as compared to granular cobalt oxide (Co3O4) of size 35-40 nm. Furthermore, encystation and excystation assays also showed consistent inhibition at 100 µg/ml. CoNPs also inhibited amoebae-mediated host cell cytotoxicity as determined by lactate dehydrogenase release without causing significant damage to human cells when treated alone.

    CONCLUSIONS: To our knowledge, these findings determined, for the first time, the effects of composition, size and morphology of CoNPs against A. castellanii. Co3(PO4)2 hexagonal microflakes showed the most promising antiamoebic effects as compared to Co(OH)2 nanoflakes and granular Co3O4. The results reported in the present study hold potential for the development of antiamoebic nanomedicine.

  3. Iqbal MZ, Khan A, Numan A, Haider SS, Iqbal J
    Ultrason Sonochem, 2019 Dec;59:104736.
    PMID: 31473424 DOI: 10.1016/j.ultsonch.2019.104736
    An upsurge in sustainable energy demands has ultimately made supercapattery one of the important choice for energy storage, owing to highly advantageous energy density and long life span. In this work, novel strontium based mixed phased nanostructures were synthesized by using probe sonicator with sonication power 500 W at frequency of 20 kHz. The synthesized material was subsequently calcined at different temperature ranging from 200 to 800 °C. Structural and morphological analysis of the synthesized materials reveals the formation of mixed particle and rod like nanostructures with multiple crystal phases of strontium oxides and carbonates. Crystallinity, grain size and morphology of grown nanomaterials significantly improved with the increase of calcination temperature due to sufficient particle growth and low agglomeration. The electrochemical performance analysis confirms the redox activeness of the Sr-based electrode materials. Material calcined at 600 °C show high specific capacitance of 350 F g-1 and specific capacity of 175 C g-1 at current density of 0.3 A g-1 due to less particle agglomeration, good charge transfer and more contribution of electrochemical active sites for redox reactions. In addition, the developed supercapattery of Sr-based nanomaterials//activated carbon demonstrated high performance with maximum energy density of 21.8 Wh kg-1 and an excellent power density of 2400 W kg-1 for the lower and higher current densities. Furthermore, the supercapattery retain 87% of its capacity after continuous 3000 charge/discharge cycles. The device characteristics were further investigated by analyzing the capacitive and diffusion controlled contributions. The versatile strategy of developing mixed phased nanomaterials pave the way to synthesize other transition metal based nanomaterials with superior electrochemical performance for hybrid energy storage devices.
  4. Liew CW, Ng HM, Numan A, Ramesh S
    Polymers (Basel), 2016 May 18;8(5).
    PMID: 30979292 DOI: 10.3390/polym8050179
    Nanocomposite polymer electrolyte membranes (NCPEMs) based on poly(acrylic acid)(PAA) and titania (TiO₂) are prepared by a solution casting technique. The ionic conductivity of NCPEMs increases with the weight ratio of TiO₂.The highest ionic conductivity of (8.36 ± 0.01) × 10-4 S·cm-1 is obtained with addition of 6 wt % of TiO₂ at ambient temperature. The complexation between PAA, LiTFSI and TiO₂ is discussed in Attenuated total reflectance-Fourier Transform Infrared (ATR-FTIR) studies. Electrical double layer capacitors (EDLCs) are fabricated using the filler-free polymer electrolyte or the most conducting NCPEM and carbon-based electrodes. The electrochemical performances of fabricated EDLCs are studied through cyclic voltammetry (CV) and galvanostatic charge-discharge studies. EDLC comprising NCPEM shows the specific capacitance of 28.56 F·g-1 (or equivalent to 29.54 mF·cm-2) with excellent electrochemical stability.
  5. Tan EW, Simon SE, Numan A, Khalid M, Tan KO
    Colloids Surf B Biointerfaces, 2024 Mar;235:113793.
    PMID: 38364521 DOI: 10.1016/j.colsurfb.2024.113793
    Breast cancer is a global health concern that requires personalized therapies to prevent relapses, as conventional treatments may develop resistance over time. Photothermal therapy using spectral radiation or intense light emission is a broad-spectrum treatment that induces hyperthermia-mediated cancer cell death. MXene, a two-dimensional material, has been reported to have potential biological applications in photothermal therapy for cancer treatment. In this study, we investigated the apoptotic activity of MXene and UV-irradiated MXene in MCF-7 breast cancer cells by treating them with varying concentrations of MXene. The cytotoxicity of MXene and UV was evaluated by analyzing cellular morphology, nuclei condensation, caspase activation, and apoptotic cell death. We also assessed the effect of the combined treatment on the expression and cellular distribution of Tubulin, a key component of microtubules required for cell division. At low concentrations of MXene (up to 100 µg/ml), the level of cytotoxicity in MCF-7 cells was low. However, the combined treatment of MXene and UV resulted in a synergistic increase in cytotoxicity, causing rounded cellular morphology, condensed nuclei, caspase activation, and apoptotic cell death. Furthermore, the treatment reduced Tubulin protein expression and cellular distribution, indicating a potent inducer of cell death with potential application for cancer treatment. The study demonstrates that the combined treatment of MXene and UVB irradiation is a promising strategy for inducing apoptotic cell death in breast cancer cells, suggesting its potential as a therapeutic intervention for breast cancer.
  6. Shahid MM, Rameshkumar P, Numan A, Shahabuddin S, Alizadeh M, Khiew PS, et al.
    Mater Sci Eng C Mater Biol Appl, 2019 Jul;100:388-395.
    PMID: 30948075 DOI: 10.1016/j.msec.2019.02.107
    Cobalt oxide nanocubes incorporated with reduced graphene oxide (rGO-Co3O4) was prepared by using simple one-step hydrothermal route. Crystallinity and structural characteristics of the nanocomposite were analyzed and confirmed using X-ray diffraction (XRD) and Raman analysis, respectively. The cubical shape of the Co3O4 nanostructures and the distribution of Co3O4 nanocubes on the surface of rGO sheets were identified through field emission scanning electron microscopy (FESEM) and energy dispersive X-ray (EDX) mapping analysis, respectively. Raman spectra depicted the presence of D and G bands for GO and rGO with different ID/IG values and thus confirmed the reduction of GO into rGO. The electrochemical study reflects that the rGO-Co3O4 nanocomposite shows good electrocatalytic activity in oxidation of depression biomarker serotonin (5-HT) in phosphate buffer (pH 7.2). The detection of 5-HT was carried out by using rGO-Co3O4 nanocomposite modified glassy carbon electrode under dynamic condition using amperometry technique with a linear range of 1-10 μM. The limit of detection and limit of quantification were calculated and found to be 1.128 and 3.760 μM, respectively with a sensitivity value of 0.133 μΑ·μM-1. The sensor showed selectivity in the presence of different interferent species such as ascorbic acid, dopamine and uric acid.
  7. Masri A, Abdelnasir S, Anwar A, Iqbal J, Numan A, Jagadish P, et al.
    Appl Microbiol Biotechnol, 2021 Apr;105(8):3315-3325.
    PMID: 33797573 DOI: 10.1007/s00253-021-11221-1
    BACKGROUND: Conducting polymer based nanocomposites are known to be effective against pathogens. Herein, we report the antimicrobial properties of multifunctional polypyrrole-cobalt oxide-silver nanocomposite (PPy-Co3O4-AgNPs) for the first time. Antibacterial activities were tested against multi-drug-resistant Gram-negative Escherichia coli (E. coli) and Gram-positive methicillin-resistant Staphylococcus aureus (MRSA) bacteria, while antiamoebic effects were assessed against opportunistic protist Acanthamoeba castellanii (A. castellanii).

    RESULTS: The ternary nanocomposite containing conducting polymer polypyrrole, cobalt oxide, and silver nanoparticles showed potent antimicrobial effects against these pathogens. The antibacterial assay showed that PPy-Co3O4-AgNPs exhibited significant bactericidal activity against neuropathogenic E. coli K1 at only 8 μg/mL as compared to individual components of the nanocomposite, whereas a 70 % inhibition of A. castellanii viability was observed at 50 μg/mL. Moreover, PPy-Co3O4-AgNPs were found to have minimal cytotoxicity against human keratinocytes HaCaT cells in vitro even at higher concentration (50 μg/mL), and also reduced the microbes-mediated cytopathogenicity against host cells.

    CONCLUSION: These results demonstrate that PPy-Co3O4-AgNPs hold promise in the development of novel antimicrobial nanomaterials for biomedical applications.

    KEY POINTS: •Synthesis of polypyrrole-cobalt oxide-silver (PPy-Co3O4-AgNPs) nanocomposite. •Antimicrobial activity of nanocomposite. •PPy-Co3O4-AgNPs hold promise for biomedical applications.

  8. Singh S, Numan A, Somaily HH, Gorain B, Ranjan S, Rilla K, et al.
    Mater Sci Eng C Mater Biol Appl, 2021 Oct;129:112384.
    PMID: 34579903 DOI: 10.1016/j.msec.2021.112384
    The emergence of methicillin-resistant Staphylococcus aureus (MRSA) has become a threat to global health because of limited treatments. MRSA infections are difficult to treat due to increasingly developing resistance in combination with protective biofilms of Staphylococcus aureus (S. aureus). Nanotechnology-based research revealed that effective MRSA treatments could be achieved through targeted nanoparticles (NPs) that withstand biological films and drug resistance. Thus, the principal aim towards improving MRSA treatment is to advance drug delivery tools, which successfully address the delivery-related problems. These potential delivery tools would also carry drugs to the desired sites of therapeutic action to overcome the adverse effects. This review focused on different types of nano-engineered carriers system for antimicrobial agents with improved therapeutic efficacy of entrapped drugs. The structural characteristics that play an essential role in the effectiveness of delivery systems have also been addressed with a description of recent scientific advances in antimicrobial treatment, emphasizing challenges in MRSA treatments. Consequently, existing gaps in the literature are highlighted, and reported contradictions are identified, allowing for the development of roadmaps for future research.
  9. Anwar A, Chi Fung L, Anwar A, Jagadish P, Numan A, Khalid M, et al.
    Pathogens, 2019 Nov 22;8(4).
    PMID: 31766722 DOI: 10.3390/pathogens8040260
    T4 genotype Acanthamoeba are opportunistic pathogens that cause two types of infections, including vision-threatening Acanthamoeba keratitis (AK) and a fatal brain infection known as granulomatous amoebic encephalitis (GAE). Due to the existence of ineffective treatments against Acanthamoeba, it has become a potential threat to all contact lens users and immunocompromised patients. Metal nanoparticles have been proven to have various antimicrobial properties against bacteria, fungi, and parasites. Previously, different types of cobalt nanoparticles showed some promise as anti-acanthamoebic agents. In this study, the objectives were to synthesize and characterize the size, morphology, and crystalline structure of cobalt phosphate nanoparticles, as well as to determine the effects of different sizes of cobalt metal-based nanoparticles against A. castellanii. Cobalt phosphate octahydrate (CHP), Co3(PO4)2•8H2O, was synthesized by ultrasonication using a horn sonicator, then three different sizes of cobalt phosphates Co3(PO4)2 were produced through calcination of Co3(PO4)2•8H2O at 200 °C, 400 °C and 600 °C (CP2, CP4, CP6). These three types of cobalt phosphate nanoparticles were characterized using a field emission scanning electron microscope (FESEM), energy dispersive X-ray spectroscopy (EDX), and X-ray diffraction (XRD) analysis. Next, the synthesized nanoparticles were subjected to biological assays to investigate their amoebicidal, amoebistatic, anti-encystation, and anti-excystation effects against A. castellanii, as well as cell cytotoxicity. The overall results showed that 1.30 ± 0.70 µm of CHP microflakes demonstrated the best anti-acanthemoebic effects at 100 µg/mL, followed by 612.50 ± 165.94 nm large CP6 nanograins. However, amongst the three tested cobalt phosphates, Co3(PO4)2, the smaller nanoparticles had stronger antiamoebic effects against A. castellanii. During cell cytotoxicity analysis, CHP exhibited only 15% cytotoxicity against HeLa cells, whereas CP6 caused 46% (the highest) cell cytotoxicity at the highest concentration, respectively. Moreover, the composition and morphology of nanoparticles is suggested to be important in determining their anti-acathamoebic effects. However, the molecular mechanisms of cobalt phosphate nanoparticles are still unidentified. Nevertheless, the results suggested that cobalt phosphate nanoparticles hold potential for development of nanodrugs against Acanthamoeba.
  10. Singh S, Alrobaian MM, Molugulu N, Agrawal N, Numan A, Kesharwani P
    ACS Omega, 2020 Jun 02;5(21):11935-11945.
    PMID: 32548372 DOI: 10.1021/acsomega.9b04064
    Antibacterial resistance remains a major global problem due to frequent prescriptions, leading to significant toxicities. To overcome the limitations of antibiotic therapy, it is highly desirable to provide site-specific delivery of drugs with controlled release. Inspired by the biocompatible, biodegradable, and site-specific mimicking behavior of poly(ethylene glycol) (PEG) and poly(caprolactone) (PCL), we developed vancomycin-PEG-PCL-PEG conjugates to maximize the pharmacological effects and minimize the side effects. Drug-loaded vancomycin-PEG-PCL-PEG conjugates are influenced by size, shape, surface area, encapsulation efficiency, in vitro drug release, hemolysis assay, cytotoxicity, and antibacterial activity against methicillin-resistant Staphylococcus aureus (MRSA) and bacterial kill kinetics. The results demonstrated that vancomycin (VCM) release from PEG-PCL-PEG triblock revealed a biphasic manner. Hemolysis assay showed the nonprescription nature of VCM-PEG-PCL-PEG. Cytotoxicity studies confirmed the biocompatibility of VCM-PEG-PCL-PEG. The in vitro antibacterial results showed enhance activity with minimum inhibitory concentration compared to bare VCM. Molecular dynamics simulation study revealed that binding between VCM and PEG-PCL-PEG by hydrophobic interactions offers molecular encapsulation and steric barrier to drug degradation. This newly developed therapeutic delivery system can offer to enhance activity and delivery VCM against MRSA.
  11. Numan A, Singh S, Zhan Y, Li L, Khalid M, Rilla K, et al.
    Mikrochim Acta, 2021 12 14;189(1):27.
    PMID: 34905090 DOI: 10.1007/s00604-021-05127-y
    Change in the level of human prostate-specific antigen (PSA) is a major element in the development and progression of prostate cancer (PCa). Most of the methodologies are currently restricted to their application in routine clinical screening due to the scarcity of adequate screening tools, false reading, long assay time, and cost. Innovative techniques and the integration of knowledge from a variety of domains, such as materials science and engineering, are needed to provide sustainable solutions. The convergence of precision point-of-care (POC) diagnostic techniques, which allow patients to respond in real time to changes in PSA levels, provides promising possibilities for quantitative and quantitative detection of PSA. This solution could be interesting and relevant for use in PCa diagnosis at the POC. The approaches enable low-cost real-time detection and are simple to integrate into user-friendly sensor devices. This review focuses on the investigations, prospects, and challenges associated with integrating engineering sciences with cancer biology to develop nanotechnology-based tools for PCa diagnosis. This article intends to encourage the development of new nanomaterials to construct high-performance POC devices for PCa detection. Finally, the review concludes with closing remarks and a perspective forecast.
  12. Fattah NFA, Ng HM, Mahipal YK, Numan A, Ramesh S, Ramesh K
    Materials (Basel), 2016 Jun 06;9(6).
    PMID: 28773573 DOI: 10.3390/ma9060450
    Solid polymer electrolyte (SPE) composed of semi-crystalline poly (vinylidene fluoride-hexafluoropropylene) [P(VdF-HFP)] copolymer, 1-ethyl-3-methylimidazolium bis (trifluoromethyl sulphonyl) imide [EMI-BTI] and graphene oxide (GO) was prepared and its performance evaluated. The effects of GO nano-filler were investigated in terms of enhancement in ionic conductivity along with the electrochemical properties of its electrical double layer capacitors (EDLC). The GO-doped SPE shows improvement in ionic conductivity compared to the P(VdF-HFP)-[EMI-BTI] SPE system due to the existence of the abundant oxygen-containing functional group in GO that assists in the improvement of the ion mobility in the polymer matrix. The complexation of the materials in the SPE is confirmed in X-ray diffraction (XRD) and thermogravimetric analysis (TGA) studies. The electrochemical performance of EDLC fabricated with GO-doped SPE is examined using cyclic voltammetry and charge-discharge techniques. The maximum specific capacitance obtained is 29.6 F∙g(-1), which is observed at a scan rate of 3 mV/s in 6 wt % GO-doped, SPE-based EDLC. It also has excellent cyclic retention as it is able keep the performance of the EDLC at 94% even after 3000 cycles. These results suggest GO doped SPE plays a significant role in energy storage application.
  13. Singh S, Numan A, Khalid M, Bello I, Panza E, Cinti S
    Small, 2023 Dec;19(51):e2208209.
    PMID: 37096900 DOI: 10.1002/smll.202208209
    Hydrogen peroxide (H2 O2 ) is a primary reactive oxygen species (ROS) that can act as a chemical signal in developing and progressing serious and life-threatening diseases like cancer. Due to the stressful nature of H2 O2 , there is an urgent need to develop sensitive analytical approaches to be applied to various biological matrices. Herein, a portable point-of-care electrochemical system based on MXene-Co3 O4 nanocomposites to detect H2 O2 in different cancer cell-lines is presented. The developed sensor is affordable, disposable, and highly selective for H2 O2 detection. This approach achieves a dynamic linear range of 75 µm with a LOD of 0.5 µm and a LOQ of 1.6 µm. To improve the practical application, the level of ROS is evaluated both in cancer cell lines MDA-MB-231 and DU145, respectively, to breast and prostate cancers, and in healthy HaCat cells. Moreover, the same cancer cells are treated with transforming growth factor-β1, and MXene-Co3 O4 modified strip is capable to monitorROS variation. The results are satisfactory compared with the cellular ROS fluorescent assay based on DCFH/DCFH-DA. These results open new perspectives for real-time monitoring of cancer progression and the efficacy of the therapy.
  14. Gerard O, Ramesh S, Ramesh K, Numan A, Norhaffis Mustafa M, Khalid M, et al.
    J Colloid Interface Sci, 2024 Aug;667:585-596.
    PMID: 38657542 DOI: 10.1016/j.jcis.2024.04.101
    Binary metal phosphate electrodes have been widely studied for energy storage applications due to the synergistic effects of two different transition elements that able to provide better conductivity and stability. Herein, the battery-type binder-free nickel-manganese phosphate (NiMn-phosphate) electrodes were fabricated with different Ni:Mn precursor ratios via microwave-assisted hydrothermal technique for 5 min at 90 °C. Overall, NiMn3P electrode (Ni:Mn = 1:3) showed an outstanding electrochemical performance, displaying the highest specific (areal) capacity at 3 A/g of 1262.4 C/g (0.44 C/cm2), and the smallest charge transfer resistance of 108.8 Ω. The enhanced performance of NiMn3P electrode can be ascribed to the fully grown amorphous nature and small-sized flake and flower structures of NiMn3P electrode material on the nickel foam (NF) surface. This configuration offered a higher number of active sites and a larger exposed area, facilitating efficient electrochemical reactions with the electrolyte. Consequently, the NiMn3P//AC electrode combination was chosen to further investigate its performance in supercapattery. The NiMn3P//AC supercapattery exhibited remarkable energy density of 105.4 Wh/kg and excellent cyclic stability with 84.7% retention after 3000 cycles. These findings underscored the superior electrochemical performance of the battery-type binder-free NiMn3P electrode, and highlight its potential for enhancing the overall performance of supercapattery.
  15. Abbas A, Ahmad MS, Cheng YH, AlFaify S, Choi S, Irfan RM, et al.
    Chemosphere, 2024 Aug 16;364:143083.
    PMID: 39154761 DOI: 10.1016/j.chemosphere.2024.143083
    Chiral drugs play an important role in modern medicine, but obtaining pure enantiomers from racemic mixtures can pose challenges. When a drug is chiral, only one enantiomer (eutomer) typically exhibits the desired pharmacological activity, while the other (distomer) may be biologically inactive or even toxic. Racemic drug formulations introduce additional health risks, as the body must still process the inactive or detrimental enantiomer. Some distomers have also been linked to teratogenic effects and unwanted side effects. Therefore, developing efficient and scalable methods for separating chiral drugs into their pure enantiomers is critically important for improving patient safety and outcomes. Metal-organic frameworks (MOFs) show promise as novel materials for chiral separation due to their highly tunable structures and interactions. This review summarizes recent advancements in using MOFs for chromatographic and spectroscopic resolution of drug enantiomers. Both the opportunities and limitations of MOF-based separation techniques are discussed. A thorough understanding of these methods could aid the continued development of pure enantiomer formulations and help reduce health risks posed by racemic drug mixtures.
  16. Numan A, Singh PS, Alam A, Khalid M, Li L, Singh S
    ACS Omega, 2022 Aug 09;7(31):27079-27089.
    PMID: 35967060 DOI: 10.1021/acsomega.2c03645
    Efficient and simple detection of chemical warfare agents (CWAs) is an essential step in minimizing the potentially lethal consequences of chemical weapons. CWAs are a family of organic chemicals that are used as chemical weapons because of their enormous severity and lethal effects when faced with unforeseen challenges. To stop the spread of CWAs, it is critical to develop a platform that detects them in a sensitive, timely, selective, and minimally invasive manner. Rapid advances in the demand for on-site sensors, metal nanoparticles, and biomarker identification for CWAs have made it possible to use fluorescence as a precise real-time and point-of-care (POCT) testing technique. For POCT-based applications, the new capabilities of micro- and nanomotors offer enormous prospects. In recent decades, significant progress has been made in the design of fluorescent sensors and the further development of noble metal nanoparticles for the detection of organophosphorus CWAs, as described in this review. Through this work, recent attempts to fabricate sensors that can detect organophosphorus CWAs through changes in their fluorescence properties have been summarized. Finally, an integrated outlook on how noble metal nanoparticles could be used to develop smart sensors for organophosphorus CWAs that communicate with and control electronic devices to monitor and improve the health of individuals.
  17. Iqbal J, Numan A, Omaish Ansari M, Jafer R, Jagadish PR, Bashir S, et al.
    Polymers (Basel), 2020 Nov 27;12(12).
    PMID: 33261072 DOI: 10.3390/polym12122816
    In this study, silver (Ag) and cobalt oxide (Co3O4) decorated polyaniline (PANI) fibers were prepared by the combination of in-situ aniline oxidative polymerization and the hydrothermal methodology. The morphology of the prepared Ag/Co3O4@PANI ternary nanocomposite was studied by scanning electron microscopy and transmission electron microscopy, while the structural studies were carried out by X-ray diffraction and X-ray photoelectron spectroscopy. The morphological characterization revealed fibrous shaped PANI, coated with Ag and Co3O4 nanograins, while the structural studies revealed high purity, good crystallinity, and slight interactions among the constituents of the Ag/Co3O4@PANI ternary nanocomposite. The electrochemical performance studies revealed the enhanced performance of the Ag/Co3O4@PANI nanocomposite due to the synergistic/additional effect of Ag, Co3O4 and PANI compared to pure PANI and Co3O4@PANI. The addition of the Ag and Co3O4 provided an extended site for faradaic reactions leading to the high specific capacity. The Ag/Co3O4@PANI ternary nanocomposite exhibited an excellent specific capacity of 262.62 C g-1 at a scan rate of 3 mV s-1. The maximum energy and power density were found to be 14.01 Wh kg-1 and 165.00 W kg-1, respectively. The cyclic stability of supercapattery (Ag/Co3O4@PANI//activated carbon) consisting of a battery type electrode demonstrated a gradual increase in specific capacity with a continuous charge-discharge cycle until ~1000 cycles, then remained stable until 2500 cycles and later started decreasing, thereby showing the cyclic stability of 121.03% of its initial value after 3500 cycles.
  18. Saidi NM, Omar FS, Numan A, Apperley DC, Algaradah MM, Kasi R, et al.
    ACS Appl Mater Interfaces, 2019 Aug 21;11(33):30185-30196.
    PMID: 31347822 DOI: 10.1021/acsami.9b07062
    To overcome the critical limitations of liquid-electrolyte-based dye-sensitized solar cells, quasi-solid-state electrolytes have been explored as a means of addressing long-term device stability, albeit with comparatively low ionic conductivities and device performances. Although metal oxide additives have been shown to augment ionic conductivity, their propensity to aggregate into large crystalline particles upon high-heat annealing hinders their full potential in quasi-solid-state electrolytes. In this work, sonochemical processing has been successfully applied to generate fine Co3O4 nanoparticles that are highly dispersible in a PAN:P(VP-co-VAc) polymer-blended gel electrolyte, even after calcination. An optimized nanocomposite gel polymer electrolyte containing 3 wt % sonicated Co3O4 nanoparticles (PVVA-3) delivers the highest ionic conductivity (4.62 × 10-3 S cm-1) of the series. This property is accompanied by a 51% enhancement in the apparent diffusion coefficient of triiodide versus both unmodified and unsonicated electrolyte samples. The dye-sensitized solar cell based on PVVA-3 displays a power conversion efficiency of 6.46% under AM1.5 G, 100 mW cm-2. By identifying the optimal loading of sonochemically processed nanoparticles, we are able to generate a homogenous extended particle network that effectively mobilizes redox-active species through a highly amorphous host matrix. This effect is manifested in a selective 51% enhancement in photocurrent density (JSC = 16.2 mA cm-2) and a lowered barrier to N719 dye regeneration (RCT = 193 Ω) versus an unmodified solar cell. To the best of our knowledge, this work represents the highest known efficiency to date for dye-sensitized solar cells based on a sonicated Co3O4-modified gel polymer electrolyte. Sonochemical processing, when applied in this manner, has the potential to make meaningful contributions toward the ongoing mission to achieve the widespread exploitation of stable and low-cost dye-sensitized solar cells.
  19. Iqbal J, Ansari MO, Numan A, Wageh S, Al-Ghamdi A, Alam MG, et al.
    Polymers (Basel), 2020 Dec 05;12(12).
    PMID: 33291451 DOI: 10.3390/polym12122918
    In this study, ternary composites of polyaniline (PANI) with manganese dioxide (MnO2) nanorods and carbon nanotubes (CNTs) were prepared by employing a hydrothermal methodology and in-situ oxidative polymerization of aniline. The morphological analysis by scanning electron microscopy showed that the MnO2 possessed nanorod like structures in its pristine form, while in the ternary PANI@CNT/MnO2 composite, coating of PANI over CNT/MnO2, rods/tubes were evidently seen. The structural analysis by X-ray diffraction and X-ray photoelectron spectroscopy showed peaks corresponding to MnO2, PANI and CNT, which suggested efficacy of the synthesis methodology. The electrochemical performance in contrast to individual components revealed the enhanced performance of PANI@CNT/MnO2 composite due to the synergistic/additional effect of PANI, CNT and MnO2 compared to pure MnO2, PANI and PANI@CNT. The PANI@CNT/MnO2 ternary composite exhibited an excellent specific capacity of 143.26 C g-1 at a scan rate of 3 mV s-1. The cyclic stability of the supercapattery (PANI@CNT/MnO2/activated carbon)-consisting of a battery type electrode-demonstrated a gradual increase in specific capacity with continuous charge-discharge over ~1000 cycles and showed a cyclic stability of 119% compared to its initial value after 3500 cycles.
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links