METHODS: Three different varieties of CoNPs were synthesized by utilizing hydrothermal and ultrasonication methods and were thoroughly characterized by X-ray diffraction and field emission scanning electron microscopy. Amoebicidal, encystation, excystation, and host cell cytopathogenicity assays were conducted to study the antiacanthamoebic effects of CoNPs.
RESULTS: The results of the antimicrobial evaluation revealed that cobalt phosphate Co3(PO4)2 hexagonal microflakes, and 100 nm large cobalt hydroxide (Co(OH)2) nanoflakes showed potent amoebicidal activity at 100 and 10 µg/ml against Acanthamoeba castellanii as compared to granular cobalt oxide (Co3O4) of size 35-40 nm. Furthermore, encystation and excystation assays also showed consistent inhibition at 100 µg/ml. CoNPs also inhibited amoebae-mediated host cell cytotoxicity as determined by lactate dehydrogenase release without causing significant damage to human cells when treated alone.
CONCLUSIONS: To our knowledge, these findings determined, for the first time, the effects of composition, size and morphology of CoNPs against A. castellanii. Co3(PO4)2 hexagonal microflakes showed the most promising antiamoebic effects as compared to Co(OH)2 nanoflakes and granular Co3O4. The results reported in the present study hold potential for the development of antiamoebic nanomedicine.
RESULTS: The ternary nanocomposite containing conducting polymer polypyrrole, cobalt oxide, and silver nanoparticles showed potent antimicrobial effects against these pathogens. The antibacterial assay showed that PPy-Co3O4-AgNPs exhibited significant bactericidal activity against neuropathogenic E. coli K1 at only 8 μg/mL as compared to individual components of the nanocomposite, whereas a 70 % inhibition of A. castellanii viability was observed at 50 μg/mL. Moreover, PPy-Co3O4-AgNPs were found to have minimal cytotoxicity against human keratinocytes HaCaT cells in vitro even at higher concentration (50 μg/mL), and also reduced the microbes-mediated cytopathogenicity against host cells.
CONCLUSION: These results demonstrate that PPy-Co3O4-AgNPs hold promise in the development of novel antimicrobial nanomaterials for biomedical applications.
KEY POINTS: •Synthesis of polypyrrole-cobalt oxide-silver (PPy-Co3O4-AgNPs) nanocomposite. •Antimicrobial activity of nanocomposite. •PPy-Co3O4-AgNPs hold promise for biomedical applications.