The estimation of age of human foetal remains is of great medico-legal importance. When the remains are intact and fresh, various morphological features such as crown-heel length, weight, appearance of ossification centres particularly around the ankles and knees and other parameters could be used to make a reasonable estimation of the period of gestation. In cases of criminal abortion, infanticide and child murder the question of age of the foetus, viability, live birth and a separate existence become very important. In practice, often at the time of detection, the remains are decomposed or skeletonised. In such a situation the examination of developing teeth will provide a reliable answer pertaining to the foetal age, the possibility of a separate existence and even the period of survival after birth. The.age determination from dental examination is possible from approximately 10 weeks intrauterine up to old age. The presence of neonatal line (birth line) in both dentine and enamel indicates live birth and a separate existence. It is possible that the time period of survival can be estimated by measuring postnatal deposition of these hard tissues. An intact human foetus that has undergone mild to moderate putrefaction was studied. The study of the morphological features and the ossification centres suggested that its approximate age was around nine months intrauterine. It was not possible to decide whether it was a live birth and had a separate existence. The examination of the developing first deciduous molar of the mandible suggested the approximate age was around 30-32 weeks intrauterine. The importance of examination of developing teeth in foetal remains (including neonates), particularly associated with putrefaction or skeletonisation is emphasized.
It is more than 50 years since the Epstein-Barr virus (EBV), the first human tumour virus, was discovered. EBV has subsequently been found to be associated with a diverse range of tumours of both lymphoid and epithelial origin. Progress in the molecular analysis of EBV has revealed fundamental mechanisms of more general relevance to the oncogenic process. This Timeline article highlights key milestones in the 50-year history of EBV and discusses how this virus provides a paradigm for exploiting insights at the molecular level in the diagnosis, treatment and prevention of cancer.
To evaluate the frequency of bacterial flora of conjunctiva after death (cadaver eyes) which will give information about the bacterial contamination of donor eyes, and the in-vitro sensitivity of isolated bacteria to the commonly used antibiotics in ophthalmic practice.
Almost all drugs approved for use in humans possess potentially beneficial 'off-target' effects in addition to their principal activity. In some cases this has allowed for the relatively rapid repurposing of drugs for other indications. In this review we focus on the potential for re-purposing FTY720 (also known as fingolimod, Gilenya(™)), an immunomodulatory drug recently approved for the treatment of multiple sclerosis (MS). The therapeutic benefit of FTY720 in MS is largely attributed to the immunosuppressive effects that result from its modulation of sphingosine 1-phosphate receptor signalling. However, this drug has also been shown to inhibit other cancer-associated signal transduction pathways in part because of its structural similarity to sphingosine, and consequently shows efficacy as an anti-cancer agent both in vitro and in vivo. Here, we review the effects of FTY720 on signal transduction pathways and cancer-related cellular processes, and discuss its potential use as an anti-cancer drug.
Disgust-driven stigma may be motivated by an assumption that a stigmatized target presents a disease threat, even in the absence of objective proof. Accordingly, even non-contagious diseases, such as cancer, can become stigmatized by eliciting disgust. This study had two parts: a survey (n = 272), assessing the association between disgust traits and cancer stigma; and an experiment, in which participants were exposed to a cancer surgery (n = 73) or neutral video (n = 68), in order to test a causal mechanism for the abovementioned association. Having a higher proneness to disgust was associated with an increased tendency to stigmatize people with cancer. Further, a significant causal pathway was observed between disgust propensity and awkwardness- and avoidance-based cancer stigma via elevated disgust following cancer surgery exposure. In contrast, those exposed to cancer surgery not experiencing elevated disgust reported less stigma than controls. Exposure-based interventions, which do not elicit disgust, may be profitable in reducing cancer stigma.
The main motivation and novel notion of this present communication is to implement the recently suggested fourth order with four stages embedded RKARMS(4,4) algorithm to examine its efficiency in reinvesting the structures of extrasolar protoplanets formed via disk instability which being presented in Paul et al. [1] (G.C. Paul, M.M. Rahman, D. Kumar, M.C. Barman, the radius spectrum of solid grains settling in gaseous giant protoplanets, Earth Sci. Inform. 6 (2013) 137-144) for the case of convective heat transfer using classical Runge-Kutta (RK) technique of order four. The results by the RKARMS(4,4) algorithm compared well with those obtained by the classical RK method of order four for any time length and found to be more suitable.
It is well recognized that oral squamous cell carcinoma (OSCC) cases from Asia that are associated with betel quid chewing are phenotypically distinct to those from Western countries that are predominantly caused by smoking/drinking, but the molecular basis of these differences are largely unknown. The aim of this study is to examine gene expression, related carcinogenic pathways and molecular processes that might be responsible for the phenotypic heterogeneity of OSCC between UK and Sri Lankan population groups.
The reaction of diethyl 2,5-bis(tert-butyl)phenoxy-3,6-dihydroxyterephthalate (1) with tetraethylene glycol di(p-toluenesulfonate) under high-dilution conditions afforded several isolated products. Two products were identified as macrocycles with one being the 1 + 1 crown ether derivative 3 (10% yield), and the second being the 2 + 2 crown ether compound D3 (19% yield). The X-ray structure for 3 was determined with the asymmetric unit observed to comprise half of the molecule. The small crown ether ring of 3 interacts with K+ or H+ ions in MeOH, but binding is weak and the macrocyclic cavity is too small to fully encapsulate the K+ ion. Transesterification of compounds 1, its methylated version 2 and 3 with diols such as ethylene glycol or 1,4-butandiol produced monomers (M1-M3) which were reacted with terephthaloyl chloride. Short oligomers were produced (PolyM1-PolyM3) rather than extensive polymeric materials and all displayed solid state fluorescence. The absorption and fluorescence properties of M1-M2 and their polymers can be related to subtle structural changes. The Stokes shift for M2 of 15 627 cm-1 in DCM is one of the largest observed for a simple organic chromophore in fluid solution.
Correction for 'Functionalized fluorescent terephthalate monomers and their attempted polyester formation' by Yvonne S. L. Choo et al., Org. Biomol. Chem., 2020, 18, 8735-8745, DOI: 10.1039/D0OB01533D.
In an arthroscopic-MRI correlation study of acute injuries to the knee it was found that anterolateral meniscocapsular separations of the lateral aspect of the knee were missed on MRI reporting. Eighty sports-related injuries of the knee were seen by experienced orthopaedic surgeons at the University of Malaya Medical Centre and at the National Sports Centre, Malaysia from January 1996 to July 1997. Fifty of the patients were suspected to have meniscal tears that were either lateral or medial on clinical examination and they were sent for MRI. Many of these patients were tertiary referrals. Magnetic resonance imaging examinations in 27 of the 50 patients were reported as not showing any intrasubstance or obvious meniscocapsular tears, but arthroscopy performed on them revealed anterolateral meniscocapsular tears of the lateral meniscus of varying degrees in nine of these patients. In retrospect the tears could be seen on MRI, and a pattern to the tears was noted and classified as follows. Type 0, normal; type 1, torn inferior or superior meniscocapsular attachment; type 2, both meniscofemoral and meniscotibial ligaments torn but with minimal separation of meniscus and capsule by fluid or synovitis; and type 3, marked separation of meniscus and capsule by fluid (> 3 mm). Ten patients who did not undergo arthroscopy for various personal and financial reasons underwent MRI which showed type 1 and type 2 tears, and were treated conservatively. These patients were all asymptomatic after 4-6 weeks with regard to clinical signs, suggesting a lateral meniscal tear. Magnetic resonance imaging therefore does reveal minor degrees of meniscocapsular tears anterolaterally when one understands the normal anatomy in this region.
Nasopharyngeal carcinoma (NPC) is a highly metastatic cancer that is consistently associated with Epstein-Barr virus (EBV) infection. In this study, we identify for the first time a role for monoamine oxidase A (MAOA) in NPC. MAOA is a mitochondrial enzyme that catalyzes oxidative deamination of neurotransmitters and dietary amines. Depending on the cancer type, MAOA can either have a tumour-promoting or tumour-suppressive role. We show that MAOA is down-regulated in primary NPC tissues and its down-regulation enhances the migration of NPC cells. In addition, we found that EBV infection can down-regulate MAOA expression in both pre-malignant and malignant nasopharyngeal epithelial (NPE) cells. We further demonstrate that MAOA is down-regulated as a result of IL-6/IL-6R/STAT3 signalling and epigenetic mechanisms, effects that might be attributed to EBV infection in NPE cells. Taken together, our data point to a central role for EBV in mediating the tumour suppressive effects of MAOA and that loss of MAOA could be an important step in the pathogenesis of NPC.
Macroautophagy (hereafter referred to as autophagy), a highly conserved metabolic process, regulates cellular homeostasis by degrading dysfunctional cytosolic constituents and invading pathogens via the lysosomal system. In addition, autophagy selectively recycles specific organelles such as damaged mitochondria (via mitophagy), and lipid droplets (LDs; via lipophagy) or eliminates specialized intracellular pathogenic microorganisms such as hepatitis B virus (HBV) and coronaviruses (via virophagy). Selective autophagy, particularly mitophagy, plays a key role in the preservation of healthy liver physiology, and its dysfunction is connected to the pathogenesis of a wide variety of liver diseases. For example, lipophagy has emerged as a defensive mechanism against chronic liver diseases. There is a prominent role for mitophagy and lipophagy in hepatic pathologies including non-alcoholic fatty liver disease (NAFLD), hepatocellular carcinoma (HCC), and drug-induced liver injury. Moreover, these selective autophagy pathways including virophagy are being investigated in the context of viral hepatitis and, more recently, the coronavirus disease 2019 (COVID-19)-associated hepatic pathologies. The interplay between diverse types of selective autophagy and its impact on liver diseases is briefly addressed. Thus, modulating selective autophagy (e.g., mitophagy) would seem to be effective in improving liver diseases. Considering the prominence of selective autophagy in liver physiology, this review summarizes the current understanding of the molecular mechanisms and functions of selective autophagy (mainly mitophagy and lipophagy) in liver physiology and pathophysiology. This may help in finding therapeutic interventions targeting hepatic diseases via manipulation of selective autophagy.
Ion-pairing a lifesaving drug such as theophylline with a targeting moiety could have a significant impact on medical emergencies such as status asthmaticus or COVID-19 induced pneumomediastinum. However, to achieve rapid drug targeting in vivo the ion-pair must be protected against breakdown before the entry into the target tissue. This study aims to investigate if inserting theophylline, when ion-paired to the polyamine transporter substrate spermine, into a cyclodextrin (CD), to form a triplex, could direct the bronchodilator to the lungs selectively after intravenous administration. NMR demonstrates that upon the formation of the triplex spermine protruded from the CD cavity and this results in energy-dependent uptake in A549 cells (1.8-fold enhancement), which persists for more than 20 min. In vivo, the triplex produces a 2.4-fold and 2.2-fold increase in theophylline in the lungs 20 min after injection in rats and mice, respectively (p
Undifferentiated nasopharyngeal carcinoma (NPC) is a highly metastatic disease that is consistently associated with Epstein-Barr virus (EBV) infection. In this study, we have investigated the contribution of lysophosphatidic acid (LPA) signalling to the pathogenesis of NPC. Here we demonstrate two distinct functional roles for LPA in NPC. First, we show that LPA enhances the migration of NPC cells and second, that it can inhibit the activity of EBV-specific cytotoxic T cells. Focusing on the first of these phenotypes, we show that one of the LPA receptors, LPA receptor 5 (LPAR5), is down-regulated in primary NPC tissues and that this down-regulation promotes the LPA-induced migration of NPC cell lines. Furthermore, we found that EBV infection or ectopic expression of the EBV-encoded LMP2A was sufficient to down-regulate LPAR5 in NPC cell lines. Our data point to a central role for EBV in mediating the oncogenic effects of LPA in NPC and identify LPA signalling as a potential therapeutic target in this disease.
Oral squamous cell carcinoma (OSCC) is a lethal disease with a 5-year mortality rate of around 50%. Molecular targeted therapies are not in routine use and novel therapeutic targets are required. Our previous microarray data indicated sphingosine 1-phosphate (S1P) metabolism and signalling was deregulated in OSCC. In this study, we have investigated the contribution of S1P signalling to the pathogenesis of OSCC. We show that the expression of the two major enzymes that regulate S1P levels were altered in OSCC: SPHK1 was significantly upregulated in OSCC tissues compared to normal oral mucosa and low levels of SGPL1 mRNA correlated with a worse overall survival. In in vitro studies, S1P enhanced the migration/invasion of OSCC cells and attenuated cisplatin-induced death. We also demonstrate that S1P receptor expression is deregulated in primary OSCCs and that S1PR2 is over-expressed in a subset of tumours, which in part mediates S1P-induced migration of OSCC cells. Lastly, we demonstrate that FTY720 induced significantly more apoptosis in OSCC cells compared to non-malignant cells and that FTY720 acted synergistically with cisplatin to induce cell death. Taken together, our data show that S1P signalling promotes tumour aggressiveness in OSCC and identify S1P signalling as a potential therapeutic target.
Head and neck squamous cell carcinoma (HNSCC) is generalized term that encompasses a diverse group of cancers that includes tumours of the oral cavity (OSCC), oropharynx (OPSCC) and nasopharynx (NPC). Genetic alterations that are common to all HNSCC types are likely to be important for squamous carcinogenesis. In this study, we have investigated the role of the homeodomain-only homeobox gene, HOPX, in the pathogenesis of HNSCC. We show that HOPX mRNA levels are reduced in OSCC and NPC cell lines and tissues and there is a general reduction of HOPX protein expression in these tumours and OPSCCs. HOPX promoter methylation was observed in a subset of HNSCCs and was associated with a worse overall survival in HPV negative tumours. RNAseq analysis of OSCC cells transfected with HOPX revealed a widespread deregulation of the transcription of genes related to epithelial homeostasis and ectopic over-expression of HOPX in OSCC and NPC cells inhibited cell proliferation, plating efficiency and migration, and enhanced sensitivity to UVA-induced apoptosis. Our results demonstrate that HOPX functions as a tumour suppressor in HNSCC and suggest a central role for HOPX in suppressing epithelial carcinogenesis.
Head and neck squamous cell carcinoma (HNSCC) is the sixth most common cancer worldwide and includes squamous cell carcinomas of the oropharynx and oral cavity. Patient prognosis has remained poor for decades and molecular targeted therapies are not in routine use. Here we showed that the overall expression of collagen subunit genes was higher in cancer-associated fibroblasts (CAFs) than normal fibroblasts. Focusing on collagen8A1 and collagen11A1, we showed that collagen is produced by both CAFs and tumour cells, indicating that HNSCCs are collagen-rich environments. We then focused on discoidin domain receptor 1 (DDR1), a collagen-activated receptor tyrosine kinase, and showed that it is over-expressed in HNSCC tissues. Further, we demonstrated that collagen promoted the proliferation and migration of HNSCC cells and attenuated the apoptotic response to cisplatin. Knockdown of DDR1 in HNSCC cells demonstrated that these tumour-promoting effects of collagen are mediated by DDR1. Our data suggest that specific inhibitors of DDR1 might provide novel therapeutic opportunities to treat HNSCC.
Between February and April, 1999, an outbreak of viral encephalitis occurred among pig-farmers in Malaysia. We report findings for the first three patients who died.