Displaying publications 1 - 20 of 68 in total

Abstract:
Sort:
  1. Khan TA, Peh KK
    J Pharm Pharm Sci, 2003 Jan-Apr;6(1):20-6.
    PMID: 12753727
    To investigate the wound healing efficacy of two chitosan films, Chit-AA and Chit-LA, in comparison with a commercial preparation, Omiderm, using punch biopsy wounds in rats.
  2. Peh KK, Wong CF
    J Pharm Pharm Sci, 1999 May-Aug;2(2):53-61.
    PMID: 10952770
    To investigate the suitability of an SCMC (sodium carboxymethyl cellulose/polyethylene glycol 400/carbopol 934P) and an HPMC (hydroxypropylmethyl cellulose/polyethylene glycol 400/carbopol 934P) films as drug vehicle for buccal delivery.
  3. Peh KK, Tan YT
    Int J Pharm Compd, 2000 May-Jun;4(3):229-31.
    PMID: 23986007
    A simple and selective high-performance liquid chromatography (HPLC) method using ultraviolet detection was developed for simultaneous determination of fusidic acid and betamethasone dipropionate in a cream formulation. A Supelcosil LC18 column was used for chromatographic separation. The mobile phase consisted of acetonitrile and 0.01 M disodium hydrogen orthophosphate (70:30, % v/v) adjusted to pH 6 with glacial acetic acid. Analysis was run at a flow rate of 1.0 mL/minute with the detector operating at 235 nm. The standard calibration curve was linear over a concentration range of 0.3 to 1.2 mg/mL for fusidic acid and 9.6 to 38.4 micrograms/mL for betamethasone dipropionate. The average recovery values for fusidic acid and betamethasone dipropionate were almost 100%. The within-run and between-run coefficient of variation and percent error values for the two drugs were all less than 2% and +/- 3%, respectively.
  4. Peh KK, Yuen KH
    J Chromatogr B Biomed Sci Appl, 1997 May 23;693(1):241-4.
    PMID: 9200543
    A simple high-performance liquid chromatographic method using fluorescence detection was developed for the determination of acyclovir in human plasma. The method entailed direct injection of the plasma sample after deproteination. It is both specific and sensitive with a detection limit of 30 ng/ml at a signal-to-noise ratio of 3:1, and is thus suitable for use in pharmacokinetic studies of acyclovir. The method had a mean absolute recovery of 96%, while the within-day and between-day coefficients of variation and percentages error were all less than 8%. The calibration curve was linear over a concentration range of 62.5-4000 ng/ml.
  5. Yuen KH, Peh KK
    J Chromatogr B Biomed Sci Appl, 1998 Sep 18;715(2):436-40.
    PMID: 9792531
    A simple high-performance liquid chromatographic method using fluorescence detection was developed for the determination of ketoconazole in human plasma. The method entailed direct injection of the plasma sample after deproteinization using acetonitrile. The mobile phase comprised 0.05 M disodium hydrogen orthophosphate and acetonitrile (50:50, v/v) adjusted to pH 6. Analysis was run at a flow-rate of 1.5 ml/min with the detector operating at an excitation wavelength of 260 nm and an emission wavelength of 375 nm. The method is specific and sensitive with a quantification limit of approximately 60 ng/ml and a detection limit of 40 ng/ml at a signal-to-noise ratio of 3:1. Mean absolute recovery value was about 105%, while the within-day and between-day coefficient of variation and percent error values of the assay method were all less than 14%. The calibration curve was linear over a concentration range of 62.5-8000 ng/ml.
  6. Liew KB, Peh KK
    Pak J Pharm Sci, 2018 Nov;31(6):2515-2522.
    PMID: 30473526
    A stability-indicating HPLC-UV method for the simultaneous determination of sildenafil citrate and dapoxetine hydrochloride in solution and tablet was developed. The mobile phase was comprised of acetonitrile and 0.2M ammonium acetate buffer. The analyte was eluted at 3.392min and 7.255min for sildenafil citrate and dapoxetine HCl respectively using gradient system at a flow rate of 1.5mL/min. The theoretical plates count was>2000, tailing factor
  7. Liew KB, Peh KK
    Arch Pharm Res, 2021 Aug;44(8):1-10.
    PMID: 25579848 DOI: 10.1007/s12272-014-0542-y
    Orally disintegrating tablet (ODT) is a user friendly and convenient dosage form. The study aimed to investigate the effect of polymers and wheat starch on the tablet properties of lyophilized ODT, with dapoxetine as model drug. Three polymers (hydroxypropylmethyl cellulose, carbopol 934P and Eudragit® EPO) and wheat starch were used as matrix forming materials in preparation of lyophilized ODT. The polymeric dispersion was casted into a mould and kept in a freezer at -20 °C for 4 h before freeze dried for 12 h. It was found that increasing in HPMC and Carbopol 934P concentrations produced tablets with higher hardness and longer disintegration time. In contrast, Eudragit® EPO was unable to form tablet with sufficient hardness at various concentrations. Moreover, HPMC seems to have a stronger effect on tablet hardness compared to Carbopol 934P at the same concentration level. ODT of less friable was obtained. Wheat starch acted as binder which strengthen the hardness of ODTs and prolonged the disintegration time. ODT comprising of HPMC and wheat starch at ratio of 2:1 was found to be optimum based upon the tablet properties. The optimum formulation was palatable and 80 % of the drug was released within 30 min in the dissolution study.
  8. Peh KK, Wong CF
    Drug Dev Ind Pharm, 2000 Jul;26(7):723-30.
    PMID: 10872090
    Controlled-release grade hydroxypropylmethylcellulose (HPMC) or xanthan gum (XG) and microcrystalline cellulose (MCC) were employed to prepare controlled-release diltiazem hydrochloride tablets. The similarity factor f2 was used for dissolution profile comparison using Herbesser 90 SR as a reference product. Drug release could be sustained in a predictable manner by modifying the content of HPMC or XG. Moreover, the drug release profiles of tablets prepared using these matrix materials were not affected by pH and agitation rate. The f2 values showed that only one batch of tablets (of diltiazem HCl, HPMC or XG, and MCC in proportions of 3.0:3.0:4.0) was considered similar to that of the reference product, with values above 50. The unbiased similarity factor f2* values were not much different from the f2 values, ascribing to a small dissolution variance of the test and reference products. The amount of HPMC or XG incorporated to produce tablets with the desired dissolution profile could be determined from the curves of f2 versus polymer content. Hence, the f2 values can be applied as screening and optimization tools during development of controlled-release preparations.
  9. Liew KB, Odeniyi MA, Peh KK
    Pharm Dev Technol, 2016;21(3):346-53.
    PMID: 25597618 DOI: 10.3109/10837450.2014.1003657
    Freeze drying technology has not been maximized and reported in manufacturing orally disintegrating films. The aim of this study was to explore the freeze drying technology in the formulation of sildenafil orally disintegrating films and compare the physical properties with heat-dried orally disintegrating film. Central composite design was used to investigate the effects of three factors, namely concentration of carbopol, wheat starch and polyethylene glycol 400 on the tensile strength and disintegration time of the film. Heat-dried films had higher tensile strength than films prepared using freeze-dried method. For folding endurance, freeze-dried films showed improved endurance than heat-dried films. Moreover, films prepared using freeze-dried methods were thicker and had faster disintegration time. Formulations with higher amount of carbopol and starch showed higher tensile strength and thickness whereas formulations with higher PEG 400 content showed better flexibility. Scanning electron microscopy showed that the freeze-dried films had more porous structure compared to the heat-dried film as a result of the release of water molecule from the frozen structure when it was subjected to freeze drying process. The sildenafil film was palatable. The dissolution profiles of freeze-dried and heat-dried films were similar to Viagra® with f2 of 51.04 and 65.98, respectively.
  10. Lim V, Peh KK, Sahudin S
    Int J Mol Sci, 2013;14(12):24670-91.
    PMID: 24351841 DOI: 10.3390/ijms141224670
    The use of disulphide polymers, a low redox potential responsive delivery, is one strategy for targeting drugs to the colon so that they are specifically released there. The objective of this study was to synthesise a new cross-linked disulphide-containing polymer based on the amino acid cysteine as a colon drug delivery system and to evaluate the efficiency of the polymers for colon targeted drug delivery under the condition of a low redox potential. The disulphide cross-linked polymers were synthesised via air oxidation of 1,2-ethanedithiol and 3-mercapto-N-2-(3-mercaptopropionamide)-3-mercapto propionic anhydride (trithiol monomers) using different ratio combinations. Four types of polymers were synthesised: P10, P11, P151, and P15. All compounds synthesised were characterised by NMR, IR, LC-MS, CHNS analysis, Raman spectrometry, SEM-EDX, and elemental mapping. The synthesised polymers were evaluated in chemical reduction studies that were performed in zinc/acetic acid solution. The suitability of each polymer for use in colon-targeted drug delivery was investigated in vitro using simulated conditions. Chemical reduction studies showed that all polymers were reduced after 0.5-1.0 h, but different polymers had different thiol concentrations. The bacterial degradation studies showed that the polymers were biodegraded in the anaerobic colonic bacterial medium. Degradation was most pronounced for polymer P15. This result complements the general consensus that biodegradability depends on the swellability of polymers in an aqueous environment. Overall, these results suggest that the cross-linked disulphide-containing polymers described herein could be used as coatings for drugs delivered to the colon.
  11. Zeeshan F, Peh KK, Tan YT
    AAPS PharmSciTech, 2009;10(3):850-7.
    PMID: 19554454 DOI: 10.1208/s12249-009-9278-2
    Compaction of controlled-release coated pellets into tablets is challenging because of the fusion of pellets and the rupturing of coated film. The difficulty in compaction intensifies with the use of extremely water-soluble drugs. Therefore, the present study was conducted to prepare and compact pellets containing pseudoephedrine hydrochloride as an extremely water-soluble model drug. The pellets were produced using an extrusion-spheronization technique. The drug-loaded pellets were coated to extend the drug release up to 12-h employing various polymers, and then they were compressed into tablets using microcrystalline cellulose Ceolus KG-801 as a novel tabletting excipient. The in vitro drug release studies of coated pellets and tablets were undertaken using the USP basket method in dissolution test apparatus I. The amount of drug released was analyzed at a wavelength of 215 nm. The combined coatings of hydroxypropyl methylcellulose and Kollicoat SR-30D yielded 12-h extended-release pellets with drug release independent of pH of dissolution medium following zero-order kinetics. The drug release from the tablets prepared using inert Celous KG-801 granules as tabletting excipient was found faster than that of coated pellets. However, a modification in drug release rate occurred with the incorporation of inert Ceolus KG-801 pellets. The drug dissolution profile from tablets containing 40% w/w each of coated pellets and inert granules along with 20% w/w inert pellets was found to be closely similar to that of coated pellets. Furthermore, the friability, tensile strength, and disintegration time of the tablets were within the USP specifications.
  12. Goh WY, Lim CP, Peh KK
    IEEE Trans Neural Netw, 2003;14(2):459-63.
    PMID: 18238031 DOI: 10.1109/TNN.2003.809420
    Applicability of an ensemble of Elman networks with boosting to drug dissolution profile predictions is investigated. Modifications of AdaBoost that enables its use in regression tasks are explained. Two real data sets comprising in vitro dissolution profiles of matrix-controlled-release theophylline pellets are employed to assess the effectiveness of the proposed system. Statistical evaluation and comparison of the results are performed. This work positively demonstrates the potentials of the proposed system for predicting desired drug dissolution characteristics in pharmaceutical product formulation tasks.
  13. Lim CP, Quek SS, Peh KK
    J Pharm Biomed Anal, 2003 Feb 05;31(1):159-68.
    PMID: 12560060
    This paper investigates the use of a neural-network-based intelligent learning system for the prediction of drug release profiles. An experimental study in transdermal iontophoresis (TI) is employed to evaluate the applicability of a particular neural network (NN) model, i.e. the Gaussian mixture model (GMM), in modeling and predicting drug release profiles. A number of tests are systematically designed using the face-centered central composite design (CCD) approach to examine the effects of various process variables simultaneously during the iontophoresis process. The GMM is then applied to model and predict the drug release profiles based on the data samples collected from the experiments. The GMM results are compared with those from multiple regression models. In addition, the bootstrap method is used to assess the reliability of the network predictions by estimating confidence intervals associated with the results. The results demonstrate that the combination of the face-centered CCD and GMM can be employed as a useful intelligent tool for the prediction of time-series profiles in pharmaceutical and biomedical experiments.
  14. Tan YT, Peh KK, Al-Hanba O
    J Pharm Pharm Sci, 2001 Jan-Apr;4(1):7-14.
    PMID: 11302785
    To investigate the interpolymer complexation between Carbopol 934P (CP) and various grades of polyvinylpyrrolidone (PVP) (K90, K32, C15, and VA/S-630).
  15. Khan TA, Peh KK, Ch'ng HS
    J Pharm Pharm Sci, 2002 Sep-Dec;5(3):205-12.
    PMID: 12553887
    To investigate and compare the effect of three analytical methods, hydrogen bromide titrimetry (HBr titrimetry), infrared spectroscopy (IR spectroscopy), and first derivative UV-spectrophotometry (FDUV-spectrophotometry) in the determination of degree of deacetylation (DD) of chitosan.
  16. Tan YT, Peh KK, Al-Hanbali O
    AAPS PharmSciTech, 2000;1(3):E24.
    PMID: 14727910
    This study examined the mechanical (hardness, compressibility, adhesiveness, and cohesiveness) and rheological (zero-rate viscosity and thixotropy) properties of polyethylene glycol (PEG) gels that contain different ratios of Carbopol 934P (CP) and polyvinylpyrrolidone K90 (PVP). Mechanical properties were examined using a texture analyzer (TA-XT2), and rheological properties were examined using a rheometer (Rheomat 115A). In addition, lidocaine release from gels was evaluated using a release apparatus simulating the buccal condition. The results indicated that an increase in CP concentration significantly increased gel compressibility, hardness, and adhesiveness, factors that affect ease of gel removal from container, ease of gel application onto mucosal membrane, and gel bioadhesion. However, CP concentration was negatively correlated with gel cohesiveness, a factor representing structural reformation. In contrast, PVP concentration was negatively correlated with gel hardness and compressibility, but positively correlated with gel cohesiveness. All PEG gels exhibited pseudoplastic flow with thixotropy, indicating a general loss of consistency with increased shearing stress. Drug release T50% was affected by the flow rate of the simulated saliva solution. A reduction in the flow rate caused a slower drug release and hence a higher T50% value. In addition, drug release was significantly reduced as the concentrations of CP and PVP increased because of the increase in zero-rate viscosity of the gels. Response surfaces and contour plots of the dependent variables further substantiated that various combinations of CP and PVP in the PEG gels offered a wide range of mechanical, rheological, and drug-release characteristics. A combination of CP and PVP with complementary physical properties resulted in a prolonged buccal drug delivery.
  17. Peh KK, Billa N, Yuen KH
    J Chromatogr B Biomed Sci Appl, 1997 Nov 07;701(1):140-5.
    PMID: 9389350
    A simple liquid chromatographic method using amperometric detection was developed for the determination of naltrexone in human plasma. Prior to analysis, naltrexone and the internal standard (naloxone) were extracted from plasma samples using a 9:1 mixture of chloroform and isopropyl alcohol. The mobile phase comprised 0.1 M disodium hydrogen orthophosphate (pH 3.5) and acetonitrile (85.5:14.5, v/v). Analysis was run at a flow-rate of 0.8 ml/min with the detector operating under oxidative mode at an applied potential of +0.95 V. The method is specific and sensitive with a detection limit of approximately 1 ng/ml at a signal-to-noise ratio of 3:1. Mean recovery value of the extraction procedure was about 93%, while the within day and between day coefficient of variation and percent error values of the assay method were all less than 10%. The calibration curve was linear over a concentration range of 1.5-100 ng/ml.
  18. Wong CF, Peh KK, Yuen KH
    J Chromatogr B Biomed Sci Appl, 1998 Oct 23;718(1):205-10.
    PMID: 9832378
    A simple high-performance liquid chromatographic method was developed for the determination of ranitidine in human plasma. Prior to analysis, ranitidine and the internal standard (metoprolol) were extracted from alkalinized plasma samples using dichloromethane. The mobile phase was 0.05 M potassium dihydrogenphosphate-acetonitrile (88:12, v/v) adjusted to pH 6.5. Analysis was run at a flow-rate of 1.3 ml/min and at a detection wavelength of 229 nm. The method is sensitive with a detection limit of 1 ng/ml at a signal-to-noise ratio of 3:1, while the quantification limit was set at 15 ng/ml. The calibration curve was linear over a concentration range of 15-2000 ng/ml. Mean recovery value of the extraction procedure was about 90%, while the within-day and between-day coefficients of variation and percent error values of the assay method were all less than 15%.
  19. Wong CF, Yuen KH, Peh KK
    Int J Pharm, 1999 Mar 25;180(1):47-57.
    PMID: 10089291
    A method using a texture analyzer equipment and chicken pouch as the biological tissue was investigated for measuring the bioadhesive properties of polymers under simulated buccal conditions. The method was evaluated using two polymers, namely Carbopol 974P and Methocel K4M while the instrument variables studied included the contact force, contact time and speed of withdrawal of the probe from the tissue. The parameters measured were the work of adhesion and peak detachment force. Longer contact time and faster probe speed not only gave better reproducibility of results, but also better sensitivities for both parameters measured. On the other hand, a certain level of contact force was found essential for achieving good bioadhesion, above which there was no further contribution to the bioadhesion process. When the method was applied to determine the bioadhesiveness of several polymers, the values obtained for the work of adhesion and peak detachment force were quite consistent in the ranking of the polymers. The Carbopols were found to have the highest values, followed by gelatin, sodium carboxymethyl celluloses and hydroxypropylmethyl celluloses. On the other hand, Alginic acid, Eudragit RLPO and RSPO, and Chitosan appeared to have low bioadhesive values.
  20. Wong CF, Yuen KH, Peh KK
    Int J Pharm, 1999 Feb 01;178(1):11-22.
    PMID: 10205621
    Controlled release buccal patches were fabricated using Eudragit NE40D and studied. Various bioadhesive polymers, namely hydroxypropylmethyl cellulose, sodium carboxymethyl cellulose and Carbopol of different grades, were incorporated into the patches, to modify their bioadhesive properties as well as the rate of drug release, using metoprolol tartrate as the model drug. The in-vitro drug release was determined using the USP 23 dissolution test apparatus 5 with slight modification, while the bioadhesive properties were evaluated using texture analyzer equipment with chicken pouch as the model tissue. The incorporation of hydrophilic polymers was found to affect the drug release as well as enhance the bioadhesiveness. Although high viscosity polymers can enhance the bioadhesiveness of the patches, they also tend to cause non-homogeneous distribution of the polymers and drug, resulting in non-predictable drug-release rates. Of the various bioadhesive polymers studied, Cekol 700 appeared to be most satisfactory in terms of modifying the drug release and enhancement of the bioadhesive properties.
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links