Displaying all 19 publications

Abstract:
Sort:
  1. Dasgupta C, Rafi MA, Salam MA
    Pak J Med Sci, 2020 9 25;36(6):1297-1302.
    PMID: 32968397 DOI: 10.12669/pjms.36.6.2943
    Objectives: Urinary tract infections due to multi drug resistant bacteria have been on the rise globally with serious implications for public health. The objective of this study was to explore the prevalence of multi drug resistant uropathogens and to correlate the urinary tract infections with some demographic and clinical characteristics of patients admitted in a tertiary care hospital in Bangladesh.

    Methods: A cross sectional prospective study was conducted at Shaheed Ziaur Rahman Medical College Hospital, Bogura, Bangladesh among clinically suspected urinary tract infection patients from January to December, 2018. Clean-catch midstream or catheter-catch urine samples were subjected to bacteriological culture using chromogenic agar media. Antimicrobial susceptibility testing of the isolates was done by Kirby-Bauer disk diffusion method following Clinical and Laboratory Standards Institute guidelines. Descriptive statistical methods were used for data analysis.

    Results: Culture yielded a total of 537 (42.8%) significant bacterial growths including 420 (78.2%) multi drug resistant uropathogens from 1255 urine samples. Escherichia coli was the most common isolate (61.6%) followed by Klebsiella spp. (22.5%), Pseudomonas spp. (7.8%), Staphylococcus aureus (5.4%) and Enterobacter spp. (2.6%) with multi drug resistance frequency of 77.6%, 71.9%, 90.5%, 86.2% and 92.9% respectively. There was female preponderance (M:F; 1:1.97; P=0.007) but insignificant differences between paediatric and adult population (43.65% vs. 42.57%) and also among different age groups. Diabetes, chronic renal failure, fever and supra-pubic pain had significant association as co-morbidities and presentations of urinary tract infections (P<0.05). Multi drug resistance ranged from 3.7 to 88.1% including moderate to high resistance found against commonly used antibiotics like ciprofloxacin, cephalosporin, azithromycin, aztreonam, cotrimoxazole and nalidixic acid (28.6 to 92.9%). Isolates showed 2.4 to 32.2% resistance to nitrofurantoin, amikacin, netilmicin and carbapenems except Pseudomonas spp. (66.7% resistance to nitrofurantoin) and Enterobacter spp. (28.6 to 42.9% resistance to carbapenems).

    Conclusion: There is very high prevalence of multi drug resistant uropathogens among hospitalized patients and emergence of carbapenem resistance is an alarming situation. Antibiotic stewardship program is highly recommended for hospitals to combat antimicrobial resistance.

  2. Salam MA, Hussein MA, Tiekink ER
    Acta Crystallogr E Crystallogr Commun, 2015 Jan 1;71(Pt 1):58-61.
    PMID: 25705451 DOI: 10.1107/S2056989014026498
    The title compound, C9H11N3O2S, is a second monoclinic (P21/c) polymorph of the previously reported Cc form [Tan et al. (2008b ▶). Acta Cryst. E64, o2224]. The mol-ecule is non-planar, with the dihedral angle between the N3CS residue (r.m.s. deviation = 0.0816 Å) and the benzene ring being 21.36 (4)°. The conformation about the C=N bond [1.292 (2) Å] is E, the two N-bound H atoms are anti, and the inner hy-droxy O-bound and outer amide N-bound H atoms form intra-molecular hydrogen bonds to the imine N atom. Crucially, the H atom of the outer hy-droxy group is approximately syn to the H atom of the benzene C atom connecting the two C atoms bearing the hy-droxy substituents. This arrangement enables the formation of supra-molecular tubes aligned along [010] and sustained by N-H⋯O, O-H⋯S and N-H⋯S hydrogen bonds; the tubes pack with no specific inter-actions between them. While the mol-ecular structure in the Cc form is comparable, the H atom of the outer hy-droxy group is approximately anti, rather than syn. This different orientation leads to the formation a three-dimensional architecture based on N-H⋯O and O-H⋯S hydrogen bonds.
  3. Islam NN, Hannan MA, Shareef H, Mohamed A, Salam MA
    ScientificWorldJournal, 2014;2014:549094.
    PMID: 24977210 DOI: 10.1155/2014/549094
    Power oscillation damping controller is designed in linearized model with heuristic optimization techniques. Selection of the objective function is very crucial for damping controller design by optimization algorithms. In this research, comparative analysis has been carried out to evaluate the effectiveness of popular objective functions used in power system oscillation damping. Two-stage lead-lag damping controller by means of power system stabilizers is optimized using differential search algorithm for different objective functions. Linearized model simulations are performed to compare the dominant mode's performance and then the nonlinear model is continued to evaluate the damping performance over power system oscillations. All the simulations are conducted in two-area four-machine power system to bring a detailed analysis. Investigated results proved that multiobjective D-shaped function is an effective objective function in terms of moving unstable and lightly damped electromechanical modes into stable region. Thus, D-shape function ultimately improves overall system damping and concurrently enhances power system reliability.
  4. Salam MA, Affan MA, Saha R, Ahmad FB, Sam N
    Bioinorg Chem Appl, 2012;2012:698491.
    PMID: 22611347 DOI: 10.1155/2012/698491
    Five new organotin(IV) complexes of 2-hydroxyacetophenone-2-methylphenylthiosemicarbazone [H(2)dampt, (1)] with formula [RSnCl(n-1)(dampt)] (where R = Me, n = 2 (2); R = Bu, n = 2 (3); R = Ph, n = 2 (4); R = Me(2), n = 1 (5); R = Ph(2), n = 1 (6)) have been synthesized by direct reaction of H(2)dampt (1) with organotin(IV) chloride(s) in absolute methanol. The ligand (1) and its organotin(IV) complexes (2-6) were characterized by CHN analyses, molar conductivity, UV-Vis, FT-IR, (1)H, (13)C, and (119)Sn NMR spectral studies. H(2)dampt (1) is newly synthesized and has been structurally characterized by X-ray crystallography. Spectroscopic data suggested that H(2)dampt (1) is coordinated to the tin(IV) atom through the thiolate-S, azomethine-N, and phenoxide-O atoms; the coordination number of tin is five. The in vitro antibacterial activity has been evaluated against Staphylococcus aureus, Enterobacter aerogenes, Escherichia coli, and Salmonella typhi. The screening results have shown that the organotin(IV) complexes (2-6) have better antibacterial activities and have potential as drugs. Furthermore, it has been shown that diphenyltin(IV) derivative (6) exhibits significantly better activity than the other organotin(IV) derivatives (2-5).
  5. Shahidullah SM, Hanafi MM, Ashrafuzzaman M, Salam MA, Khair A
    C. R. Biol., 2009 Oct;332(10):909-16.
    PMID: 19819411 DOI: 10.1016/j.crvi.2009.07.003
    Crop duration of a rice plant, essentially dictated by flowering response, is an important selection criterion. It is determined by the interaction of genotype and environment. A field experiment was conducted with 40 rice genotypes to assess the fluctuation and/or stability of crop duration in a series of 16 environmental conditions. The effects of genotype, environment and all the components of G x E interaction were highly significant. Among the genotypes Benaful and Gandho kasturi were most sensitive to environmental changes, and indicating lower adaptability over the environments. Crop durations of 17 genotypes were comparatively stable against environmental changes. Four genotypes viz. Basmati PNR346, BR28, Neimat and Sarwati showed only nonlinear sensitivity and thus unpredictable fluctuation. Seventeen genotypes indicated average stability over the environments. The AMMI analysis identified Badshabhog, Basmati Tapl-90, Bhog ganjia, BR38, Elai, Jata katari and Radhuni pagal as most stable genotypes over the environment series. It also advocated three comparatively stable environments for all the genotypes.
  6. Shahidullah SM, Hanafi MM, Ashrafuzzaman M, Razi Ismail M, Salam MA, Khair A
    C. R. Biol., 2010 Jan;333(1):61-7.
    PMID: 20176338 DOI: 10.1016/j.crvi.2009.10.002
    A field experiment was conducted to evaluate photosynthetic efficiency along with different growth parameters of aromatic rice genotypes. Forty genotypes including three non-aromatic checks exhibited enormous variations for leaf area index (LAI), crop growth rate (CGR), relative growth rate (RGR), net assimilation rate (NAR), grain yield, total dry matter, harvest index and photosynthetic efficiency or energy use efficiency (Emu) at panicle initiation and heading stages. Minimum LAI-value was 0.52 in Khazar at PI stage and maximum was 4.91 in Sakkor khora at heading stage. The CGR-value was in the range of 4.80-24.11 g m(-2) per day. The best yielder BR39 produced grain of 4.21 t ha(-1) and the worst yielder Khazar gave 1.42 t ha(-1). Total dry matter (TDM) yield varied from 4.04 to 12.26 t ha(-1) where genotypes proved their energy use efficiency a range between 0.58 to 1.65%. Emu showed a significant positive relation with TDM (r=0.80(**)), CGR (r=0.72(**)) and grain yield (r=0.66(**)). A negative correlation was established between TDM and harvest index and LAI and RGR. Path analysis result showed that NAR at heading stage exerted highest positive direct effect (0.70) on Emu.
  7. Khatun MR, Alam KMF, Naznin M, Salam MA
    Pak J Med Sci, 2021 6 10;37(3):821-826.
    PMID: 34104172 DOI: 10.12669/pjms.37.3.3942
    Objectives: Chronic suppurative otitis media is a major cause of acquired hearing impairment, especially in children of developing countries. The study sought to explore the bacteriological profile and their antimicrobial susceptibility among patients of chronic suppurative otitis media from a tertiary care hospital in Bangladesh.

    Methods: A cross sectional microbiological study was conducted at the Department of Microbiology, Rajshahi Medical College, Bangladesh from January to December 2019. Aural swabs were collected aseptically from clinically suspected patients irrespective of age and gender attending the ear, nose and throat outpatient department of Rajshahi Medical College Hospital. Aerobic bacterial culture was done and isolates were identified through standard bacteriological identification scheme. Antimicrobial susceptibility testing of isolates was done by modified Kirby-Bauer disk diffusion method following Clinical and Laboratory Standards Institute guidelines.

    Results: Of 96 swabs, culture yielded a total of 73 bacterial isolates from 68(70.8%) culture-positive plates including 63 (65.6%) unimicrobial and 5 (5.2%) polymicrobial (mixed growth of a pair of bacteria) growths. Frequency distribution revealed, 40(55%) gram-negative and 33(45%) gram-positive bacteria with Staphylococcus aureus was the leading isolate (37%) followed by Pseudomonas aeruginosa (31.5%), Escherichia coli (13.7%), coagulase-negative Staphylococcus (8.2%), Klebsiella pneumoniae (5.5%) and Proteus spp. (4.1%). Gram-positive bacteria were found to be highly susceptible (100%) to Linezolid and Vancomycin followed by Imipenem (83 to 96.3%), while moderate to high resistance (44 to 67%) was observed against Ciprofloxacin, Ceftriaxone, Ceftazidime, Amoxicillin/Clavulanate and Clindamycin. For gram-negative bacteria, susceptibility ranged from 67 to 100% to Imipenem, 67 to 96% to Piperacillin/Tazobactam and 67 to 83% to Gentamicin, while moderate to high resistance (50 to 75%) was observed against Ciprofloxacin, Ceftriaxone, Ceftazidime and Amoxicillin/Clavulanate.

    Conclusion: Moderate to high level of multidrug-resistance especially to 3rd generation cephalosporins, Ciprofloxacin and Amoxicillin/Clavulanate is an alarming situation. It warns reinforcement of judicious antibiotic prescription and introduction of antibiotic stewardship program in the tertiary care hospitals.

  8. Affan MA, Salam MA, Asaruddin MR, Ng SW, Tiekink ER
    Acta Crystallogr Sect E Struct Rep Online, 2012 Jul 1;68(Pt 7):m909-10.
    PMID: 22807748 DOI: 10.1107/S1600536812025937
    Two independent mol-ecules comprise the asymmetric unit in the title compound, [Sn(C₄H₉)(C₁₄H₁₉N₄S)Cl₂]. In each mol-ecule, the Sn(IV) atom exists within a distorted octa-hedral geometry defined by the N,N',S-tridentate mono-deprotonated Schiff base ligand, two mutually trans Cl atoms, and the α-C atom of the n-butyl group; the latter is trans to the azo-N atom. The greatest distortion from the ideal geometry is found in the nominally trans angle formed by the S and pyridyl-N atoms at Sn [151.72 (7) and 152.04 (7)°, respectively]. In the crystal, mol-ecules are consolidated into a three-dimensional architecture by a combination of N-H⋯Cl, C-H⋯π and π-π inter-actions [inter-centroid distances = 3.6718 (19) and 3.675 (2) Å].
  9. Abid MB, Wahab RA, Salam MA, Gzara L, Moujdin IA
    Heliyon, 2023 Feb;9(2):e12810.
    PMID: 36793956 DOI: 10.1016/j.heliyon.2023.e12810
    Water is a critical component for humans to survive, especially in arid lands or areas where fresh water is scarce. Hence, desalination is an excellent way to effectuate the increasing water demand. Membrane distillation (MD) technology entails a membrane-based non-isothermal prominent process used in various applications, for instance, water treatment and desalination. It is operable at low temperature and pressure, from which the heat demand for the process can be sustainably sourced from renewable solar energy and waste heat. In MD, the water vapors are gone through the membrane's pores and condense at permeate side, rejecting dissolved salts and non-volatile substances. However, the efficacy of water and biofouling are the main challenges for MD due to the lack of appropriate and versatile membrane. Numerous researchers have explored different membrane composites to overcome the above-said issue, and attempt to develop efficient, elegant, and biofouling-resistant novel membranes for MD. This review article addresses the 21st-century water crises, desalination technologies, principles of MD, the different properties of membrane composites alongside compositions and modules of membranes. The desired membrane characteristics, MD configurations, role of electrospinning in MD, characteristics and modifications of membranes used for MD are also highlighted in this review.
  10. Salam MA, Al-Amin MY, Pawar JS, Akhter N, Lucy IB
    Saudi J Biol Sci, 2023 Mar;30(3):103582.
    PMID: 36852413 DOI: 10.1016/j.sjbs.2023.103582
    Antimicrobial susceptibility testing is an essential task for selecting appropriate antimicrobial agents to treat infectious diseases. Constant evolution has been observed in methods used in the diagnostic microbiology laboratories. Disc diffusion or broth microdilution are classical and conventional phenotypic methods with long turnaround time and labour-intensive but still widely practiced as gold-standard. Scientists are striving to develop innovative, novel and faster methods of antimicrobial susceptibility testing to be applicable for routine microbiological laboratory practice and research. To meet the requirements, there is an increasing trend towards automation, genotypic and micro/nano technology-based innovations. Automation in detection systems and integration of computers for online data analysis and data sharing are giant leaps towards versatile nature of automated methods currently in use. Genotypic methods detect a specific genetic marker associated with resistant phenotypes using molecular amplification techniques and genome sequencing. Microfluidics and microdroplets are recent addition in the continuous advancement of methods that show great promises with regards to safety and speed and have the prospect to identify and monitor resistance mechanisms. Although genotypic and microfluidics methods have many exciting features, however, their applications into routine clinical laboratory practice warrant extensive validation. The main impetus behind the evolution of methods in antimicrobial susceptibility testing is to shorten the overall turnaround time in obtaining the results and to enhance the ease of sample processing. This comprehensive narrative review summarises major conventional phenotypic methods and automated systems currently in use, and highlights principles of some of the emerging genotypic and micro/nanotechnology-based methods in antimicrobial susceptibility testing.
  11. Salam MA, Alsultany FH, Al-Bermany E, Sabri MM, Abdali K, Ahmed NM
    J Ultrasound, 2024 Feb 07.
    PMID: 38324099 DOI: 10.1007/s40477-023-00855-8
    PURPOSE: Graphene-polymer nanocomposites significantly impact dental filler and antibacterial applications. The study aims to overcome some problems dental filers present and improve their properties and antibacterial activity. Synthesis graphene oxide (GO) and poly (methyl methacrylate) (PMMA) were used to reinforce two types of commercial hybrid/nano-dental fillings.

    METHODS: Developed acoustic-solution-sonication-casting methods were applied to fabricate the new graphene-polymer-dental filler nanocomposites. The structure, morphology, rheological and mechanical properties, and antibacterial of the newly fabricated filling-PMMA/ GO nanocomposites were investigated.

    RESULTS: Fourier transform infrared (FTIR) showed a significant interaction between the filling and the additional materials. The X-ray diffraction (XRD) analysis revealed a considerable change in crystalline behavior. Optical microscope (OM) with field emission scanning electron microscopy (FESEM) pictures demonstrated a substantial change in the morphology of the samples with a homogeneous and fine dispersion of the nanomaterials in the filler matrix. Multi-frequency ultrasound mechanical properties measured the ultrasonic velocity, absorption coefficient, compressibility, bulk modulus, and other mechanical properties that notably enhanced after GO contributed up to 325% of the ultrasonic absorption coefficient compared with hybrid/nano-fillers. Rheological properties were measured as viscosity, absorption coefficient, and specific viscosity, which significantly improved after adding PMMA and incorporating GO up to 57% of the viscosity, compared with hybrid/nano-fillers. The inhibition zone of moth bacteria, such as Enterococcus faecalis and E. staph bacteria, improved after the contribution of GO nanosheets up to 46%.

    CONCLUSION: Nanofillers nanocomposites presented better properties and inhabitances zone diameter of antibacterial.

  12. Shaha DC, Hasan J, Kundu SR, Yusoff FM, Salam MA, Khan M, et al.
    Sci Rep, 2022 Dec 05;12(1):20980.
    PMID: 36470973 DOI: 10.1038/s41598-022-24500-2
    The tropical estuarine ecosystem is fascinating for studying the dynamics of water quality and phytoplankton diversity due to its frequently changing hydrological conditions. Most importantly, phytoplankton is the main supplier of ω3 polyunsaturated fatty acids (PUFA) in the coastal food web for fish as they could not synthesize PUFA. This study evaluated seasonal variations of water quality parameters in the Meghna River estuary (MRE), explored how phytoplankton diversity changes according to hydro-chemical parameters, and identified the major phytoplankton groups as the main source of PUFA for hilsa fish. Ten water quality indicators including temperature, dissolved oxygen, pH, salinity, dissolved inorganic nitrogen (DIN = nitrate, nitrite, ammonia) and phosphorus, dissolved silica and chlorophyll-a were evaluated. In addition, phytoplankton diversity was assessed in the water and hilsa fish gut. Principal component analysis (PCA) was used to analyze the spatio-temporal changes in the water quality conditions, and the driving factors in the MRE. Four main components were extracted and explained 75.4% variability of water quality parameters. The most relevant driving factors were dissolved oxygen, salinity, temperature, and DIN (nitrate, nitrite and ammonia). These variabilities in physicochemical parameters and dissolved inorganic nutrients caused seasonal variations in two major groups of phytoplankton. Peak abundance of Chlorophyta (green algae) occurred in water in nutrient-rich environments (nitrogen and phosphorus) during the wet (36%) season, while Bacillariophyta (diatoms) were dominant during the dry (32%) season that depleted dissolved silica. Thus, the decrease of green algae and the increase of diatoms in the dry season indicated the potential link to seasonal changes of hydro-chemical parameters. The green algae (53.7%) were the dominant phytoplankton group in the hilsa gut content followed by diatoms (22.6%) and both are contributing as the major source of PUFAs for hilsa fish according to the electivity index as they contain the highest amounts of PUFAs (60 and 28% respectively).
  13. Khan MAH, Reza MA, Sharaf IM, Alam MJ, Rahman MM, Chandra P, et al.
    Pak J Med Sci, 2023;39(4):1212-1215.
    PMID: 37492299 DOI: 10.12669/pjms.39.4.7437
    Lipoid proteinosis is a rare multisystem genodermatosis inherited as autosomal recessive trait. We report a case of lipoid proteinosis in a 10-year-old boy born to first-degree consanguineous parents presented with marked hoarseness of voice, accelerated photoaging appearance, enlarged and erythematous tongue with restricted movement and widespread dermatoses. Biopsy of oral mucosa revealed Periodic acid-Schiff (PAS)-positive amorphous eosinophilic hyaline deposits. Mutational analysis revealed a homozygous nonsense mutation with C to T substitution at nucleotide position 1246(c.1246C>T) in exon-8 of the extracellular matrix protein 1 gene leading to a stop codon. Both the parents were unaffected heterozygous carriers. To our knowledge, this is the first case report of lipoid proteinosis with evidence of a novel nonsense genetic mutation from Bangladesh.
  14. Aggarwal D, Yang J, Salam MA, Sengupta S, Al-Amin MY, Mustafa S, et al.
    Front Immunol, 2023;14:1203073.
    PMID: 37671162 DOI: 10.3389/fimmu.2023.1203073
    Cancer is one of the deadliest diseases, causing million of deaths each year globally. Conventional anti-cancer therapies are non-targeted and have systemic toxicities limiting their versatile applications in many cancers. So, there is an unmet need for more specific therapeutic options that will be effective as well as free from toxicities. Antibody-drug conjugates (ADCs) are suitable alternatives with the right potential and improved therapeutic index for cancer therapy. The ADCs are highly precise new class of biopharmaceutical products that covalently linked a monoclonal antibody (mAb) (binds explicitly to a tumor-associated surface antigen) with a customized cytotoxic drug (kills cancer cells) and tied via a chemical linker (releases the drug). Due to its precise design, it brings about the target cell killing sparing the normal counterpart and free from the toxicities of conventional chemotherapy. It has never been so easy to develop potential ADCs for successful therapeutic usage. With relentless efforts, it took almost a century for scientists to advance the formula and design ADCs for its current clinical applications. Until now, several ADCs have passed successfully through preclinical and clinical trials and because of proven efficacy, a few are approved by the FDA to treat various cancer types. Even though ADCs posed some shortcomings like adverse effects and resistance at various stages of development, with continuous efforts most of these limitations are addressed and overcome to improve their efficacy. In this review, the basics of ADCs, physical and chemical properties, the evolution of design, limitations, and future potentials are discussed.
  15. Islam MS, Nur-E-Alam M, Iqbal MA, Khan MB, Mamun SA, Miah MY, et al.
    Environ Res, 2024 Feb 24.
    PMID: 38408626 DOI: 10.1016/j.envres.2024.118551
    Bangladesh is currently experiencing significant infrastructural development in road networking system through the construction or reconstruction of multiple roads and highways. Consequently, there is a rise in traffic intensity on roads and highways, along with a significant contamination of adjacent agricultural soils with heavy metals. The purpose of this study was to evaluate the ecological risk, health risk and the abundance of seven heavy metals (Cu, Mn, Pb, Cd, Cr, As, and Ni) in three distance gradients (0, 300, and 500 m) of agricultural soil along the Dhaka-Chattogram highway. The concentration of heavy metals was measured with an Atomic Absorption Spectrophotometer (AAS) on a total of 36 soil samples that were taken from 12 different sampling sites. Based on the findings, Cd had a high contamination factor for all distance gradients, whereas Cr had a moderate contamination factor in 67% of the study areas. According to the Pollution Load Index (PLI), Cd, Cr, and Pb were the predominant pollutants. Principal component analysis (PCA) result shows these metals mainly came from anthropogenic sources. The considerable positive correlations between Cu-Pb, Cu-Cd, Pb-Cd, and Cr-Ni all pointed to shared anthropogenic origins. As per Potential Ecological Risk Assessment (PERI) analysis, Pb, Cd, Cr, and Ni each contribute significantly and pose a moderate threat. The Target Hazard Quotient (THQ) values for all pathways of exposure to Pb and Cr in soils were more than 1, which would pose a significant risk to human health in the following order: THQadult female > THQadult male > THQchildren. This study will help to evaluate the human health risk and develop a better understanding of the heavy metal abundance scenario in the agricultural fields adjacent to this highway.
  16. Salam MA, Dayal SR, Siddiqua SA, Muhib MI, Bhowmik S, Kabir MM, et al.
    Environ Sci Pollut Res Int, 2021 Oct;28(39):55166-55175.
    PMID: 34129166 DOI: 10.1007/s11356-021-14701-z
    The heavy metals namely Fe, As, Cu, Cd, and Pb were investigated in two marine fishes silver pomfret (Pampus argentus) and torpedo scad (Megalaspis cordyla), and three seafoods sibogae squid (Loligo sibogae), Indian white prawn (Fenneropenaeus indicus), and mud crab (Scylla serrata) by using inductively coupled plasma spectrophotometer (ICP-MS) from two renowned fish harvesting coastal area of Malaysia named as Kedah and Selangor. Among the target heavy metals, highest mean concentration of As and Fe were found in Scylla serrata (72.14±7.77 μg/g) in Kedah and Megalaspis cordyla (149.40±2.15 μg/g) in Selangor. Pearson's correlation results showed As-Fe-Cd-Cu originated from the same source. Maximum estimated daily intake (EDI) values of Scylla serrata were found 175.25 μg/g/day and 100.81 μg/g/day for child in both Kedah and Selangor areas respectively. Hazard quotient (HQ) and hazard index (HI) results revealed that local consumers of Kedah and Selangor will face high chronic risk if they consume Scylla serrata, Fenneropenaeus indicus, and Megalaspis cordyla on regular basis in their diet. Carcinogenic risk results suggested that all the studied species pose very high risk of cancer occurrences to the consumers in both areas. Therefore, it could be recommended that consumers should be aware when they are consuming these marine species since they can pose serious health risk associated with prolonged consumption.
  17. Salam MA, Paul SC, Zain RAMM, Bhowmik S, Nath MR, Siddiqua SA, et al.
    PLoS One, 2020;15(10):e0241320.
    PMID: 33104734 DOI: 10.1371/journal.pone.0241320
    The rapid growth of industrial and agricultural activities in Malaysia are leading to the impairment of most of the rivers in recent years through realising various trace metals. This leads to toxicity, particularly when the toxic has entered the food chain. Perak River is one of the most dynamic rivers for the Malaysian population. Therefore, in consideration of the safety issue, this study was conducted to assess the concentration of such metals (Cd, Cu, Zn, Fe, and Pb) in the muscles of most widely consumed fish species (Barbonymus schwanenfeldii, Puntius bulum, Puntius daruphani, Hexanematichthys sagor, Channa striatus, Mystacoleucus marginatus, and Devario regina) from different locations of Perak River, Malaysia by employing inductively coupled plasma optical emission spectroscopy (ICP-OES). Among the trace metals, Fe and Cd were found to be the highest (29.33-148.01 μg/g) and lowest (0.16-0.49 μg/g) concentration in all of the studied species, respectively. Although the estimated daily intakes (μg/kg/day) of Cd (0.65-0.85), Fe (79.27-352.00) and Pb (0.95-12.17) were higher than their reference, the total target hazard quotients values suggested that the local residents would not experience any adverse health effects from its consumption. In contrast, the target cancer risk value suggested that all fish species posed a potential cancer risk due to Cd and cumulative cancer risk values, strongly implying that continuous consumption of studied fish species would cause cancer development to its consumers.
  18. Hasan M, Hossain MM, Abrarin S, Kormoker T, Billah MM, Bhuiyan MKA, et al.
    Environ Sci Pollut Res Int, 2023 Sep;30(45):100828-100844.
    PMID: 37644270 DOI: 10.1007/s11356-023-29491-9
    Tobacco products are widely recognized as a major contributor to death. Cigarette smoke contains several toxic chemicals including heavy metals particulate causing high health risks. However, limited information has been available on the health risks associated with the heavy metals in cigarettes commonly sold in the Bangladeshi market. This study evaluated the concentrations and potential health risks posed by ten concerned heavy metals in ten widely consumed cigarette brands in Bangladesh using an atomic absorption spectrometer. The concentration (mg/kg) ranges of heavy metals Pb, Cd, Cr, As, Co, Ni, Mn, Fe, Cu, and Zn vary between 0.46-1.05, 0.55-1.03, 0.80-1.2, 0.22-0.40, 0.46-0.78, 2.59-3.03, 436.8-762.7, 115.8-184.4, 146.6-217.7, and 34.0-42.7, respectively. We assume that the heavy metals content among cigarette brands is varied due to the differences in the source of tobacco they use for cigarette preparation. The carcinogenic risks posed by heavy metals follow the order of Cr > Co > Cd > As > Ni > Pb, while the non-carcinogenic risks for Cu, Zn, Fe, and Mn were greater than unity (HQ > 1), except for Fe. The existence of toxic heavy metals in cigarette tobacco may thus introduce noticeable non-carcinogenic and carcinogenic health impacts accompanying inhalation exposure. This study provides the first comprehensive report so far on heavy metal concentration and associated health risks in branded cigarettes commonly sold in Bangladesh. Hence, this data and the information provided can serve as a baseline as well as a reference for future research and have potential implications for policy and legislation in Bangladesh.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links