Displaying all 13 publications

Abstract:
Sort:
  1. AbuBakar S, Shu MH, Johari J, Wong PF
    Int J Med Sci, 2014;11(6):538-44.
    PMID: 24782642 DOI: 10.7150/ijms.7896
    Alteration in the endothelium leading to increased vascular permeability contributes to plasma leakage seen in dengue hemorrhagic fever (DHF) and dengue shock syndrome (DSS). An earlier study showed that senescent endothelial cells (ECs) altered the ECs permeability. Here we investigated the susceptibility of senescing human umbilical vein endothelial cells (HUVECs) to dengue virus infection and determined if dengue virus infection induces HUVECs senescence. Our results suggest that DENV type-2 (DENV-2) foci forming unit (FFU) and extracellular virus RNA copy number were reduced by at least 35% and 85% in infection of the intermediate young and early senescent HUVECs, respectively, in comparison to infection of young HUVECs. No to low infectivity was recovered from infection of late senescent HUVECs. DENV infection also increases the percentage of HUVECs expressing senescence-associated (SA)-β-gal, cells arrested at the G2/M phase or 4N DNA content stage and cells with enlarged morphology, indicative of senescing cells. Alteration of HUVECs morphology was recorded using impedance-based real-time cell analysis system following DENV-2 infection. These results suggest that senescing HUVECs do not support DENV infection and DENV infection induces HUVECs senescence. The finding highlights the possible role of induction of senescence in DENV infection of the endothelial cells.
  2. Shu MH, Appleton D, Zandi K, AbuBakar S
    PMID: 23497105 DOI: 10.1186/1472-6882-13-61
    Gracilaria changii (Xia et Abbott) Abbott, Zhang et Xia, a red algae commonly found in the coastal areas of Malaysia is traditionally used for foods and for the treatment of various ailments including inflammation and gastric ailments. The aim of the study was to investigate anti-inflammatory, gastroprotective and anti-ulcerogenic activities of a mass spectrometry standardized methanolic extract of Gracilaria changii.
  3. Marlina S, Shu MH, AbuBakar S, Zandi K
    Parasit Vectors, 2015;8:579.
    PMID: 26553263 DOI: 10.1186/s13071-015-1104-y
    The xCELLigence real-time cell analysis (RTCA) system is an established electronic cell sensor array. This system uses microelectronic biosensor technology that is verified for real-time, label-free, dynamic and non-offensive monitoring of cellular features, including detection of viral cytopathic effect (CPE). Screening viral replication inhibitors based on presence of CPE has been applied for different viruses, including chikungunya virus (CHIKV). However, most CPE-based methods, including MTT and MTS assays, do not provide information on the initiation of CPE nor the changes in reaction rate of the virus propagation over time. Therefore, in this study we developed an RTCA method as an accurate and time-based screen for antiviral compounds against CHIKV.
  4. Wong PF, Cheong WF, Shu MH, Teh CH, Chan KL, AbuBakar S
    Phytomedicine, 2012 Jan 15;19(2):138-44.
    PMID: 21903368 DOI: 10.1016/j.phymed.2011.07.001
    Bioactive compounds from the medicinal plant, Eurycoma longifolia Jack have been shown to promote anti-proliferative effects on various cancer cell lines. Here we examined the effects of purified eurycomanone, a quassinoid found in Eurycoma longifolia Jack extract, on the expression of selected genes of the A549 lung cancer cells. Eurycomanone inhibited A549 lung cancer cell proliferation in a dose-dependent manner at concentrations ranging from 5 to 20 μg/ml. The concentration that inhibited 50% of cell growth (GI(50)) was 5.1 μg/ml. The anti-proliferative effects were not fully reversible following the removal of eurycomanone, in which 30% of cell inhibition still remained (p<0.0001, T-test). At 8 μg/ml (GI(70)), eurycomanone suppressed anchorage-independent growth of A549 cells by >25% (p<0.05, T-test, n=8) as determined using soft agar colony formation assay. Cisplatin, a chemotherapy drug used for the treatment of non small cell lung cancer on the other hand, inhibited A549 cells proliferation at concentrations ranging from 0.2 μg/ml to 15 μg/ml with a GI(50) of 0.58 μg/ml. The treatment with eurycomanone reduced the abundance expression of the lung cancer markers, heterogeneous nuclear ribonucleoprotein (hnRNP) A2/B1, p53 tumor suppressor protein and other cancer-associated genes including prohibitin (PHB), annexin 1 (ANX1) and endoplasmic reticulum protein 28 (ERp28) but not the house keeping genes. The mRNA expressions of all genes with the exception of PHB were significantly downregulated, 72 h after treatment (p<0.05, T-test, n=9). These findings suggest that eurycomanone at viable therapeutic concentrations of 5-20 μg/ml exhibited significant anti-proliferative and anti-clonogenic cell growth effects on A549 lung cancer cells. The treatment also resulted in suppression of the lung cancer cell tumor markers and several known cancer cell growth-associated genes.
  5. Shu MH, MatRahim N, NorAmdan N, Pang SP, Hashim SH, Phoon WH, et al.
    Sci Rep, 2016;6:22332.
    PMID: 26923424 DOI: 10.1038/srep22332
    Vaccination may be an alternative treatment for infection with multidrug-resistance (MDR) Acinetobacter baumannii. The study reported here evaluated the bactericidal antibody responses following immunization of mice using an inactivated whole-cell vaccine derived from antibiotic-exposed MDR A. baumannii (I-M28-47-114). Mice inoculated with I-M28-47 (non-antibiotic-exposed control) and I-M28-47-114 showed a high IgG antibody response by day 5 post-inoculation. Sera from mice inoculated with I-M28-47-114 collected on day 30 resulted in 80.7 ± 12.0% complement-mediated bacteriolysis in vitro of the test MDR A. baumannii treated with imipenem, which was a higher level of bacteriolysis over sera from mice inoculated with I-M28-47. Macrophage-like U937 cells eliminated 49.3 ± 11.6% of the test MDR A. baumannii treated with imipenem when opsonized with sera from mice inoculated with I-M28-47-114, which was a higher level of elimination than observed for test MDR A. baumannii opsonized with sera from mice inoculated with I-M28-47. These results suggest that vaccination with I-M28-47-114 stimulated antibody responses capable of mounting high bactericidal killing of MDR A. baumannii. Therefore, the inactivated antibiotic-exposed whole-cell vaccine (I-M28-47-114) has potential for development as a candidate vaccine for broad clearance and protection against MDR A. baumannii infections.
  6. Jee PF, Chen FS, Shu MH, Wong WF, Abdul Rahim R, AbuBakar S, et al.
    Biotechnol Prog, 2017 Jan;33(1):154-162.
    PMID: 27802566 DOI: 10.1002/btpr.2400
    Heterologous protein displayed on the surface of Lactococcus lactis using the binding domain of N-acetylmuramidase (AcmA) has a potential application in vaccine delivery. In this study, we developed a non-recombinant L. lactis surface displaying the influenza A (H1N1) 2009 hemagglutinin (HA1). Three recombinant proteins, HA1/L/AcmA, HA1/AcmA, and HA1 were overexpressed in Escherichia coli, and purified. In the binding study using flow cytometry, the HA1/L/AcmA, which contained the single-chain variable fragment (scFv) peptide linker showed significantly higher percentage of binding counts and mean fluorescence binding intensity (MFI) (51.7 ± 1.4% and 3,594.0 ± 675.9, respectively) in comparison to the HA1/AcmA without the scFv peptide linker (41.1 ± 1.5% and 1,652.0 ± 34.1, respectively). Higher amount of HA1/L/AcmA (∼2.9 × 10(4) molecules per cell) was displayed on L. lactis when compared to HA1/AcmA (∼1.1 × 10(4) molecules per cell) in the immunoblotting analysis. The HA1/L/AcmA completely agglutinated RBCs at comparable amount of protein to that of HA1/AcmA and HA1. Computational modeling of protein structures suggested that scFv peptide linker in HA1/L/AcmA kept the HA1 and the AcmA domain separated at a much longer distance in comparison to HA1/AcmA. These findings suggest that insertion of the scFv peptide linker between HA1 and AcmA improved binding of recombinant proteins to L. lactis. Hence, insertion of scFv peptide linker can be further investigated as a potential approach for improvement of heterologous proteins displayed on the surface of L. lactis using the AcmA binding domain. © 2016 American Institute of Chemical Engineers Biotechnol. Prog., 33:154-162, 2017.
  7. Tiong V, Shu MH, Wong WF, AbuBakar S, Chang LY
    Front Microbiol, 2018;9:2747.
    PMID: 30483242 DOI: 10.3389/fmicb.2018.02747
    Nipah virus (NiV) can infect multiple organs in humans with the central nervous system (CNS) being the most severely affected. Currently, it is not fully understood how NiV spreads throughout the body. NiV has been shown to infect certain leukocyte populations and we hypothesized that these infected cells could cross the blood-brain barrier (BBB), facilitating NiV entry into the CNS. Here, three leukocyte types, primary immature dendritic cells (iDC), primary monocytes (pMO), and monocytic cell line (THP-1), were evaluated for permissiveness to NiV. We found only iDC and THP-1 were permissive to NiV. Transendothelial migration of mock-infected and NiV-infected leukocytes was then evaluated using an in vitro BBB model established with human brain microvascular endothelial cells (HBMEC). There was approximately a threefold increase in migration of NiV-infected iDC across endothelial monolayer when compared to mock-infected iDC. In contrast, migration rates for pMO and THP-1 did not change upon NiV infection. Across TNF-α-treated endothelial monolayer, there was significant increase of almost twofold in migration of NiV-infected iDC and THP-1 over mock-infected cells. Immunofluorescence analysis showed the migrated NiV-infected leukocytes retained their ability to infect other cells. This study demonstrates for the first time that active NiV infection of iDC and THP-1 increased their transendothelial migration activity across HBMEC and activation of HBMEC by TNF-α further promoted migration. The findings suggest that NiV infection of leukocytes to disseminate the virus via the "Trojan horse" mechanism is a viable route of entry into the CNS.
  8. Tan KK, Zulkifle NI, Sulaiman S, Pang SP, NorAmdan N, MatRahim N, et al.
    BMC Evol. Biol., 2018 04 24;18(1):58.
    PMID: 29699483 DOI: 10.1186/s12862-018-1175-4
    BACKGROUND: Dengue virus type 3 genotype III (DENV3/III) is associated with increased number of severe infections when it emerged in the Americas and Asia. We had previously demonstrated that the DENV3/III was introduced into Malaysia in the late 2000s. We investigated the genetic diversity of DENV3/III strains recovered from Malaysia and examined their phylogenetic relationships against other DENV3/III strains isolated globally.

    RESULTS: Phylogenetic analysis revealed at least four distinct DENV3/III lineages. Two of the lineages (DENV3/III-B and DENV3/III-C) are current actively circulating whereas the DENV3/III-A and DENV3/III-D were no longer recovered since the 1980s. Selection pressure analysis revealed strong evidence of positive selection on a number of amino acid sites in PrM, E, NS1, NS2a, NS2b, NS3, NS4a, and NS5. The Malaysian DENV3/III isolates recovered in the 1980s (MY.59538/1987) clustered into DENV3/III-B, which was the lineage with cosmopolitan distribution consisting of strains actively circulating in the Americas, Africa, and Asia. The Malaysian isolates recovered after the 2000s clustered within DENV3/III-C. This DENV3/III-C lineage displayed a more restricted geographical distribution and consisted of isolates recovered from Asia, denoted as the Asian lineage. Amino acid variation sites in NS5 (NS5-553I/M, NS5-629 T, and NS5-820E) differentiated the DENV3/III-C from other DENV3 viruses. The codon 629 of NS5 was identified as a positively selected site. While the NS5-698R was identified as unique to the genome of DENV3/III-C3. Phylogeographic results suggested that the recent Malaysian DENV3/III-C was likely to have been introduced from Singapore in 2008 and became endemic. From Malaysia, the virus subsequently spread into Taiwan and Thailand in the early part of the 2010s and later reintroduced into Singapore in 2013.

    CONCLUSIONS: Distinct clustering of the Malaysian old and new DENV3/III isolates suggests that the currently circulating DENV3/III in Malaysia did not descend directly from the strains recovered during the 1980s. Phylogenetic analyses and common genetic traits in the genome of the strains and those from the neighboring countries suggest that the Malaysian DENV3/III is likely to have been introduced from the neighboring regions. Malaysia, however, serves as one of the sources of the recent regional spread of DENV3/III-C3 within the Asia region.

  9. Lani R, Hassandarvish P, Shu MH, Phoon WH, Chu JJ, Higgs S, et al.
    Antiviral Res, 2016 Sep;133:50-61.
    PMID: 27460167 DOI: 10.1016/j.antiviral.2016.07.009
    This study focuses on the antiviral activity of selected flavonoids against the Chikungunya virus (CHIKV), a mosquito-transmitted virus that can cause incapacitating arthritis in infected individuals. Based on the results of screening on Vero cells, the tested compounds were evaluated further with various assays, including cytotoxicity assay, virus yield assay by quantitative reverse transcription polymerase chain reaction (qRT-PCR), virus RNA replication assay with a CHIKV replicon cell line, Western blotting, and quantitative immunofluorescence assay. Baicalein, fisetin, and quercetagetin displayed potent inhibition of CHIKV infection, with 50% inhibitory concentrations [IC50] of 1.891 μg/ml (6.997 μM), 8.444 μg/ml (29.5 μM), and 13.85 μg/ml (43.52 μM), respectively, and with minimal cytotoxicity. The time-of-addition studies and various antiviral assays demonstrated that baicalein and quercetagetin mainly inhibited CHIKV binding to the Vero cells and displayed potent activity against extracellular CHIKV particles. The qRT-PCR, immunofluorescence assay, and Western blot analyses indicated that each of these flavonoids affects CHIKV RNA production and viral protein expression. These data provide the first evidence of the intracellular anti-CHIKV activity of baicalein, fisetin, and quercetagetin.
  10. Jee PF, Tiong V, Shu MH, Khoo JJ, Wong WF, Abdul Rahim R, et al.
    PLoS One, 2017;12(11):e0187718.
    PMID: 29108012 DOI: 10.1371/journal.pone.0187718
    Mucosal immunization of influenza vaccine is potentially an effective approach for the prevention and control of influenza. The objective of the present study was to evaluate the ability of oral immunization with a non-recombinant Lactococcus lactis displaying HA1/L/AcmA recombinant protein, LL-HA1/L/AcmA, to induce mucosal immune responses and to accord protection against influenza virus infection in mice. The LL-HA1/L/AcmA was orally administered into mice and the immune response was evaluated. Mice immunized with LL-HA1/L/AcmA developed detectable specific sIgA in faecal extract, small intestine wash, BAL fluid and nasal fluid. The results obtained demonstrated that oral immunization of mice with LL-HA1/L/AcmA elicited mucosal immunity in both the gastrointestinal tract and the respiratory tract. The protective efficacy of LL-HA1/L/AcmA in immunized mice against a lethal dose challenge with influenza virus was also assessed. Upon challenge, the non-immunized group of mice showed high susceptibility to influenza virus infection. In contrast, 7/8 of mice orally immunized with LL-HA1/L/AcmA survived. In conclusion, oral administration of LL-HA1/L/AcmA in mice induced mucosal immunity and most importantly, provided protection against lethal influenza virus challenge. These results highlight the potential application of L. lactis as a platform for delivery of influenza virus vaccine.
  11. Zandi K, Lim TH, Rahim NA, Shu MH, Teoh BT, Sam SS, et al.
    BMC Complement Altern Med, 2013 Apr 29;13:91.
    PMID: 23627436 DOI: 10.1186/1472-6882-13-91
    BACKGROUND: Scutellaria baicalensis (S. baicalensis) is one of the traditional Chinese medicinal herbs that have been shown to possess many health benefits. In the present study, we evaluated the in vitro antiviral activity of aqueous extract of the roots of S. baicalensis against all the four dengue virus (DENV) serotypes.

    METHODS: Aqueous extract of S. baicalensis was prepared by microwave energy steam evaporation method (MEGHE™), and the anti-dengue virus replication activity was evaluated using the foci forming unit reduction assay (FFURA) in Vero cells. Quantitative real-time polymerase chain reaction (qRT-PCR) assay was used to determine the actual dengue virus RNA copy number. The presence of baicalein, a flavonoid known to inhibit dengue virus replication was determined by mass spectrometry.

    RESULTS: The IC(50) values for the S. baicalensis extract on Vero cells following DENV adsorption ranged from 86.59 to 95.19 μg/mL for the different DENV serotypes. The IC(50) values decreased to 56.02 to 77.41 μg/mL when cells were treated with the extract at the time of virus adsorption for the different DENV serotypes. The extract showed potent direct virucidal activity against extracellular infectious virus particles with IC(50) that ranged from 74.33 to 95.83 μg/mL for all DENV serotypes. Weak prophylactic effects with IC(50) values that ranged from 269.9 to 369.8 μg/mL were noticed when the cells were pre-treated 2 hours prior to virus inoculation. The concentration of baicalein in the S. baicalensis extract was ~1% (1.03 μg/gm dried extract).

    CONCLUSIONS: Our study demonstrates the in vitro anti-dengue virus replication property of S. baicalensis against all the four DENV serotypes investigated. The extract reduced DENV infectivity and replication in Vero cells. The extract was rich in baicalein, and could be considered for potential development of anti-DENV therapeutics.

  12. Teoh BT, Sam SS, Tan KK, Johari J, Shu MH, Danlami MB, et al.
    BMC Evol. Biol., 2013;13:213.
    PMID: 24073945 DOI: 10.1186/1471-2148-13-213
    Recurring dengue outbreaks occur in cyclical pattern in most endemic countries. The recurrences of dengue virus (DENV) infection predispose the population to increased risk of contracting the severe forms of dengue. Understanding the DENV evolutionary mechanism underlying the recurring dengue outbreaks has important implications for epidemic prediction and disease control.
  13. Teoh BT, Sam SS, Tan KK, Danlami MB, Shu MH, Johari J, et al.
    J Clin Microbiol, 2015 Mar;53(3):830-7.
    PMID: 25568438 DOI: 10.1128/JCM.02648-14
    A method for the rapid diagnosis of early dengue virus (DENV) infection is highly needed. Here, a prototype reverse transcription-recombinase polymerase amplification (RT-RPA) assay was developed. The assay detected DENV RNA in <20 min without the need for thermocycling amplification. The assay enabled the detection of as few as 10 copies of DENV RNA. The designed RT-RPA primers and exo probe detected the DENV genome of at least 12 genotypes of DENV circulating globally without cross-reacting with other arboviruses. We assessed the diagnostic performance of the RT-RPA assay for the detection of DENV RNA in 203 serum samples of patients with clinically suspected dengue. The sera were simultaneously tested for DENV using a reverse transcription-loop-mediated isothermal amplification (RT-LAMP) assay, quantitative RT-PCR (qRT-PCR), and IgM- and IgG-capture enzyme-linked immunosorbent assays (ELISA). Acute DENV infection was confirmed in 130 samples and 61 of the samples (46.9%) were classified as viremic with qRT-PCR. The RT-RPA assay showed good concordance (κ of ≥0.723) with the RT-LAMP and qRT-PCR assays in detecting the dengue viremic samples. When used in combination with ELISA, both the RT-RPA and RT-LAMP assays increased the detection of acute DENV infection to ≥95.7% (≥45/47) in samples obtained within 5 days of illness. The results from the study suggest that the RT-RPA assay is the most rapid molecular diagnostic tool available for the detection of DENV. Hence, it is possible to use the RT-RPA assay in a laboratory to complement routine serology testing for dengue.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links