Displaying publications 1 - 20 of 42 in total

  1. Gorain B, Rajeswary DC, Pandey M, Kesharwani P, Kumbhar SA, Choudhury H
    Curr Pharm Des, 2020;26(19):2233-2246.
    PMID: 32167424 DOI: 10.2174/1381612826666200313125613
    Increasing incidence of demented patients around the globe with limited FDA approved conventional therapies requires pronounced research attention for the management of the demented conditions in the growing elderly population in the developing world. Dementia of Alzheimer's type is a neurodegenerative disorder, where conventional therapies are available for symptomatic treatment of the disease but possess several peripheral toxicities due to lack of brain targeting. Nanotechnology based formulations via intranasal (IN) routes of administration have shown to improve therapeutic efficacy of several therapeutics via circumventing blood-brain barrier and limited peripheral exposure. Instead of numerous research on polymeric and lipid-based nanocarriers in the improvement of therapeutic chemicals and peptides in preclinical research, a step towards clinical studies still requires wide-ranging data on safety and efficacy. This review has focused on current approaches of nanocarrierbased therapies on Alzheimer's disease (AD) via the IN route for polymeric and lipid-based nanocarriers for the improvement of therapeutic efficacy and safety. Moreover, the clinical application of IN nanocarrier-based delivery of therapeutics to the brain needs a long run; however, proper attention towards AD therapy via this platform could bring a new era for the AD patients.
    Matched MeSH terms: Administration, Intranasal
  2. Husain S, Amilia HH, Rosli MN, Zahedi FD, Sachlin IS, Development Group Clinical Practice Guidelines Management of Rhinosinusitis in Adolescents & Adults
    Malays Fam Physician, 2018;13(1):28-33.
    PMID: 29796207 MyJurnal
    Rhinosinusitis is a common health problem encountered in primary care. It is due to mucosal inflammation of the nose and paranasal sinuses. Less than 2% of the cases are associated with bacterial infections. Diagnosis is based on clinical symptoms and supported by nasal endoscopy and imaging studies. Intranasal corticosteroids and normal saline irrigation are important treatments. Antibiotics are seldom indicated.
    Matched MeSH terms: Administration, Intranasal
  3. Abourehab MAS, Khames A, Genedy S, Mostafa S, Khaleel MA, Omar MM, et al.
    Pharmaceutics, 2021 Apr 19;13(4).
    PMID: 33921796 DOI: 10.3390/pharmaceutics13040581
    Nicergoline (NIC) is a semisynthetic ergot alkaloid derivative applied for treatment of dementia and other cerebrovascular disorders. The efficacy of sesame oil to slow and reverse the symptoms of neurodegenerative cognitive disorders has been proven. This work aimed to formulate and optimize sesame oil-based NIC-nanostructured lipid carriers (NIC-NLCs) for intranasal (IN) delivery with expected synergistic and augmented neuroprotective properties. The NIC-NLC were prepared using sesame oil as a liquid lipid. A three-level, three-factor Box-Behnken design was applied to statistically optimize the effect of sesame oil (%) of the total lipid, surfactant concentration, and sonication time on particle size, zeta potential, and entrapment efficacy as responses. Solid-state characterization, release profile, and ex vivo nasal permeation in comparison to NIC solution (NIC-SOL) was studied. In vivo bioavailability from optimized NIC-NLC and NIC-SOL following IN and IV administration was evaluated and compared. The optimized NIC-NLC formula showed an average particle size of 111.18 nm, zeta potential of -15.4 mV, 95.11% entrapment efficacy (%), and 4.6% loading capacity. The NIC-NLC formula showed a biphasic, extended-release profile (72% after 48 h). Permeation of the NIC-NLC formula showed a 2.3 enhancement ratio. Bioavailability studies showed a 1.67 and 4.57 fold increase in plasma and brain following IN administration. The results also indicated efficient direct nose-to-brain targeting properties with the brain-targeting efficiency (BTE%) and direct transport percentage (DTP%) of 187.3% and 56.6%, respectively, after IN administration. Thus, sesame oil-based NIC-NLC can be considered as a promising IN delivery system for direct and efficient brain targeting with improved bioavailability and expected augmented neuroprotective action for the treatment of dementia.
    Matched MeSH terms: Administration, Intranasal
  4. Kumbhar SA, Kokare CR, Shrivastava B, Gorain B, Choudhury H
    J Pharm Sci, 2021 04;110(4):1761-1778.
    PMID: 33515583 DOI: 10.1016/j.xphs.2021.01.021
    Delivering therapeutics to the brain using conventional dosage forms is always a challenge, thus the present study was aimed to formulate mucoadhesive nanoemulsion (MNE) of aripiprazole (ARP) for intranasal delivery to transport the drug directly to the brain. Therefore, a TPGS based ARP-MNE was formulated and optimized using the Box-Behnken statistical design. The improved in vitro release profile of the formulation was in agreement to enhanced ex vivo permeation through sheep mucous membranes with a maximum rate of permeation co-efficient (62.87  cm h-1 × 103) and flux (31.43  μg cm-2.h-1). The pharmacokinetic profile following single-dose administration showed the maximum concentration of drug in the brain (Cmax) of 15.19 ± 2.51  μg mL-1 and Tmax of 1 h in animals with ARP-MNE as compared to 10.57 ± 1.88  μg mL-1 and 1 h, and 2.52 ± 0.38  μg mL-1 and 3 h upon intranasal and intravenous administration of ARP-NE, respectively. Further, higher values of % drug targeting efficiency (96.9%) and % drug targeting potential (89.73%) of ARP-MNE through intranasal administration were investigated. The studies in Wistar rats showed no existence of extrapyramidal symptoms through the catalepsy test and forelimb retraction results. No ex vivo ciliotoxicity on nasal mucosa reflects the safety of the components and delivery tool. Further, findings on locomotor activity and hind-limb retraction test in ARP-MNE treated animals established its antipsychotic efficacy. Thus, it can be inferred that the developed ARP-MNE could effectively be explored as brain delivery cargo in the effective treatment of schizophrenia without producing any toxic manifestation.
    Matched MeSH terms: Administration, Intranasal
  5. Gurdeep SM, Philip R, Rosalind S
    Trop Biomed, 2005 Dec;22(2):221-4.
    PMID: 16883291 MyJurnal
    Rhinocort and Eltair are both the patented and generic equivalent of the topical nasal steroid budesonide. A study consisting of 42 patients was conducted at the ENT department of Hospital Ipoh to compare the response of patients who were using Rhinocort prior to Eltair. The results show statistically significant symptomatic response and lower complications with Rhinocort compared to Eltair.
    Matched MeSH terms: Administration, Intranasal
  6. Chatterjee B, Gorain B, Mohananaidu K, Sengupta P, Mandal UK, Choudhury H
    Int J Pharm, 2019 Jun 30;565:258-268.
    PMID: 31095983 DOI: 10.1016/j.ijpharm.2019.05.032
    Intranasal delivery has shown to circumvent blood-brain-barrier (BBB) and deliver the drugs into the CNS at a higher rate and extent than other conventional routes. The mechanism of drug transport from nose-to-brain is not fully understood yet, but several neuronal pathways are considered to be involved. Intranasal nanoemulsion for brain targeting is investigated extensively. Higher brain distribution of drug after administering intranasal nanoemulsion was established by many researchers. Issues with nasomucosal clearance are solved by formulating modified nanoemulsion; for instance, mucoadhesive nanoemulsion or in situ nanoemulgel. However, no intranasal nanoemulsion for brain targeted drug delivery has been able to cross the way from 'benches to bed-side' of patients. Possibilities of toxicity by repeated administration, irregular nasal absorption during the diseased condition, use of a high amount of surfactants are few of the persisting challenges that need to overcome in coming days. Understanding the ways how current developments has solved some challenges is necessary. At the same time, the future direction of the research on intranasal nanoemulsion should be figured out based on existing challenges. This review is focused on the current developments of intranasal nanoemulsion with special emphasis on the existing challenges that would help to set future research direction.
    Matched MeSH terms: Administration, Intranasal
  7. Gadhave D, Tupe S, Tagalpallewar A, Gorain B, Choudhury H, Kokare C
    Int J Pharm, 2021 Sep 25;607:121050.
    PMID: 34454028 DOI: 10.1016/j.ijpharm.2021.121050
    Unfavorable side effects of available antipsychotics limit the use of conventional delivery systems, where limited exposure of the drugs to the systemic circulation could reduce the associated risks. The potential of intranasal delivery is gaining interest to treat brain disorders by delivering the drugs directly to the brain circumventing the tight junctions of the blood-brain barrier with limited systemic exposure of the entrapped therapeutic. Therefore, the present research was aimed to fabricate, optimize and investigate the therapeutic efficacy of amisulpride (AMS)-loaded intranasal in situ nanoemulgel (AMS-NG) in the treatment of schizophrenia. In this context, AMS nanoemulsion (AMS-NE) was prepared by employing aqueous-titration method and optimized using Box-Behnken statistical design. The optimized nanoemulsion was subjected to evaluation of globule size, transmittance, zeta potential, and mucoadhesive strength, which were found to be 92.15 nm, 99.57%, -18.22 mV, and 8.90 g, respectively. The AMS-NE was converted to AMS-NG using poloxamer 407 and gellan gum. Following pharmacokinetic evaluation in Wistar rats, the brain Cmax for intranasal AMS-NG was found to be 1.48-folds and 3.39-folds higher when compared to intranasal AMS-NE and intravenous AMS-NE, respectively. Moreover, behavioral investigations of developed formulations were devoid of any extrapyramidal side effects in the experimental model. Finally, outcomes of the in vivo hematological study confirmed that intranasal administration of formulation for 28 days did not alter leukocytes and agranulocytes count. In conclusion, the promising results of the developed and optimized intranasal AMS-NG could provide a novel platform for the effective and safe delivery of AMS in schizophrenic patients.
    Matched MeSH terms: Administration, Intranasal
  8. Salama M, Sobh M, Emam M, Abdalla A, Sabry D, El-Gamal M, et al.
    Exp Ther Med, 2017 Mar;13(3):976-982.
    PMID: 28450929 DOI: 10.3892/etm.2017.4073
    Parkinson's disease (PD) is the second most common neurodegenerative disease worldwide. It affects the locomotor system, leading to a final severe disability through degeneration of dopaminergic neurons. Despite several therapeutic approaches used, no treatment has been proven to be effective; however, cell therapy may be a promising therapeutic method. In addition, the use of the intranasal (IN) route has been advocated for delivering various therapies to the brain. In the present study, the IN route was used for administration of mesenchymal stem cells (MSCs) in a mouse model of PD, with the aim to evaluate IN delivery as an alternative route for cell based therapy administration in PD. The PD model was developed in C57BL/6 mice using intraperitoneal rotenone administration for 60 consecutive days. MSCs were isolated from the mononuclear cell fraction of pooled bone marrow from C57BL/6 mice and incubated with micrometer-sized iron oxide (MPIO) particles. For IN administration, we used a 20 µl of 5×10(5) cell suspension. Neurobehavioral assessment of the mice was performed, and after sacrifice, brain sections were stained with Prussian blue to detect the MPIO-labeled MSCs. In addition, immunohistochemical evaluation was conducted to detect tyrosine hydroxylase (TH) antibodies in the corpus striatum and dopaminergic neurons in the substantia nigra pars compacta (SNpc). The neurobehavioral assessment revealed progressive deterioration in the locomotor functions of the rotenone group, which was improved following MSC administration. Histopathological evaluation of brain sections in the rotenone+MSC group revealed successful delivery of MSCs, evidenced by positive Prussian blue staining. Furthermore, rotenone treatment led to significant decrease in dopaminergic neuron number in SNpc, as well as similar decrease in the corpus striatum fiber density. By contrast, in animals receiving IN administration of MSCs, the degeneration caused by rotenone treatment was significantly counteracted. In conclusion, the present study validated that IN delivery of MSCs may be a potential safe, easy and cheap alternative route for stem cell treatment in neurodegenerative disorders.
    Matched MeSH terms: Administration, Intranasal
  9. Rafidah O, Zamri-Saad M, Shahirudin S, Nasip E
    Vet. Rec., 2012 Aug 18;171(7):175.
    PMID: 22815208 DOI: 10.1136/vr.100403
    The efficacy of an intranasal haemorrhagic septicaemia vaccine containing live gdhA derivative Pasteurella multocida B:2 was tested in buffaloes in Sabah. Sixty buffaloes, kept grazing in the field with minimal human intervention were devided into three groups of 20 buffaloes per group. Buffaloes of group 1 were exposed intranasal to 5 ml vaccine containing 10(6) CFU/ml of live gdhA derivative P multocida B:2. Buffaloes of group 2 were not exposed to the vaccine but exposed to PBS and were allowed to commingle and graze in the same field as the buffaloes of group 1 while buffaloes of group 3 were similarly exposed to PBS and were grazing separately. Booster was on group 1, two weeks later. Twelve months after the first vaccination, three buffaloes from each group were brought into the experimental house and challenged subcutaneously with 10(9) CFU/ml of live wild-type P multocida B:2. All challenged buffaloes of groups 1 and 2 survived with only mild, transient signs while all control unvaccinated buffaloes developed severe signs of haemorrhagic septicaemia and were euthanased between 28 hours and 38 hours postchallenge with signs and lesions typical of haemorrhagic septicaemia. These data showed that the gdhA mutant strain, given intranasally as two doses two weeks apart, successfully induced systemic immunity in exposed buffaloes and also led to spread of vaccine strain to the in-contact animals, where it acted as an effective live vaccine to protect both exposed buffaloes and in-contact buffaloes against challenge with the virulent parent strain.
    Matched MeSH terms: Administration, Intranasal/veterinary
  10. Armstrong RW, Armstrong MJ, Yu MC, Henderson BE
    Cancer Res, 1983 Jun;43(6):2967-70.
    PMID: 6850606
    We conducted a case-control study of nasopharyngeal carcinoma among Malaysian Chinese to test inhalants, salted fish consumption, and use of tobacco, alcohol, and nasal ointments as risk factors for the disease. Interviews with 100 cases and 100 controls indicated that salted fish consumption during childhood was a significant risk factor (relative risk, 3.0; p = 0.04); childhood daily consumption of this food item compared to nonconsumption carried a relative risk of 17.4 [95% confidence interval = (2.7, 111.1)]. Occupational exposure to smokes (relative risk, 6.0; p = 0.006) and to dusts (relative risk, 4.0; p less than 0.001) was also significantly associated with nasopharyngeal carcinoma. The two risk factors (consumption of salted fish and exposure to smoke and/or dust) were independent of each other. There was no association between nasopharyngeal carcinoma and tobacco, alcohol, or nasal ointments.
    Matched MeSH terms: Administration, Intranasal/adverse effects
  11. Shafarin MS, Zamri-Saad M, Jamil SM, Siti Khairani B, Saharee AA
    PMID: 17381677
    Haemorrhagic septicaemia (HS) is an acute disease of cattle and buffaloes caused by Pasteurella multocida 6:B. Outbreaks of the disease have been closely associated with carrier animals that transmit the organism to susceptible animals during stressful condition. This study was conducted to determine whether goats exposed intranasally to P. multocida 6:B can transmit the organism to contact goats. Thirty-six healthy local Katjang goats were divided into four groups and goats of groups 1 and 3 were each inoculated intranasally with a 1-ml inoculum that contained 1 x 10(9) CFU/ml of live P. multocida 6:B. Following the exposure, all goats of groups 3 and 4 were injected with dexamethasone at the rate of 1 mg/kg for three consecutive days. At the end of the dexamethasone treatment, goats of groups 1 and 2 were commingled but kept separate from goats of groups 3 and 4, which were commingled in another pen. Three surviving goats from each group were killed on days 7, 14 and 21 post-exposure for postmortem examination. Naso-pharyngeal mucus and heart blood were collected on swabs. Tissues from lungs, lymph nodes and tonsils were collected for bacteriological isolation and identification. Only one goat of group 3 died 6 days post-exposure showing clinical signs and lesions typical of HS. Other goats showed mild signs of upper respiratory tract infection. Goats of all groups developed acute mild pneumonic lesions, however, those treated with dexamethasone had significantly (P < 0.05) more extensive lesion scoring based on the lesion scoring system. P. multocida 6:B was isolated from the nasal mucosa and lung lesions of exposed and contact goats not treated with dexamethasone. Exposed and contact goats treated with dexamethasone carried the organism for 21 days. P. multocida isolation from heart blood was made only from exposed and contact goats treated with dexamethasone. P. multocida was isolated from the lymph node of the goat that died during the experiment.
    Matched MeSH terms: Administration, Intranasal
  12. Gurdeep S, Harvinder S, Philip R, Amanjit K
    Med J Malaysia, 2006 Mar;61(1):112-3.
    PMID: 16708748
    A 60-year-old man who presented with nasopharyngitis developed uncontrollable epistaxis following a punch biopsy of the nasopharynx. QuickClot was successfully used to arrest the haemorrhage under general anaesthesia after the usual methods employed to secure haemostasis failed. The haemostatic plug was successfully removed a week later after control of the infection. This case represents the first reported intranasal use of QuickClot. We describe our experience and a literature review on this haemostatic agent.
    Matched MeSH terms: Administration, Intranasal
  13. Gendeh BS, Ferguson BJ, Johnson JT, Kapadia S
    Med J Malaysia, 1998 Dec;53(4):435-8.
    PMID: 10971991
    Septal perforation from intranasal cocaine abuse is well recognised. We present a case of progressive septal as well as palatal perforation. Progression from septal perforation to palatal perforation occurred after cessation of intranasal cocaine abuse. This patient had a weakly positive cytoplasmic antineutrophilic cytoplasmic antibody (C-ANCA) but no histologic evidence of Wegener's Granulomatosis. The differential diagnosis for septal and palatal perforation is reviewed. This case represents the fifth reported case of palatal perforation secondary to cocaine abuse in the literature, and the second associated with positive C-ANCA.
    Matched MeSH terms: Administration, Intranasal
  14. Effendy AW, Zamri-Saad M, Puspa R, Rosiah S
    Vet. Rec., 1998 Apr 18;142(16):428-31.
    PMID: 9595632
    A trial was conducted to compare the efficacy of intranasal vaccination in protecting goats against pneumonic pasteurellosis with intramuscular vaccination using an oil adjuvant vaccine, and a combination of the two methods. Forty goats were divided into four equal groups. Group 1 was vaccinated twice intranasally with formalin-killed Pasteurella haemolytica A2, group 2 was vaccinated twice intramuscularly with an oil adjuvant vaccine containing P haemolytica A7, and group 3 was initially vaccinated intranasally with the formalin-killed P haemolytica A2 followed by intramuscular vaccination with the oil adjuvant vaccine. In each group the two vaccinations were carried out four weeks apart. Group 4 was the unvaccinated control group. All goats were challenged intratracheally with 4 ml of an inoculum containing live P haemolytica A2 at a concentration of 1.3 x 10(7) colony forming units/ml two weeks after the last vaccination and were killed 14 days after the challenge. Although group 2 showed the highest clinical score following the challenge, deaths were observed only in group 3. Three goats in group 1 had pneumonic lung lesions, compared with six goats in group 2 and all the goats in groups 3 and 4. The lung lesions in group 1 were significantly (P < 0.05) less severe than in groups 3 and 4. Similarly, the lesions in group 2 were markedly less severe than in groups 3 and 4, although the differences were not significant. The difference between the extent of the lung lesions in the goats in groups 1 and 2 was not significant. Antibody against P haemolytica A2 in group 1 reached peak levels and was significantly (P < 0.01) higher than in the control group one week after the second vaccination, before declining.
    Matched MeSH terms: Administration, Intranasal
  15. Kang TL, Velappan RD, Kabir N, Mohamad J, Rashid NN, Ismail S
    Microb Pathog, 2019 Mar;128:90-96.
    PMID: 30584901 DOI: 10.1016/j.micpath.2018.12.042
    Haemorrhagic septicaemia (HS) is a well-known high fatality septicaemic disease happening among bovines. The disease is caused by the Pasteurella multocida serotype B:2 bacteria. P. multocida B:2 has high mortality and morbidity rates and is spread through the intranasal and oral routes in bovines. In this study, our aim was to investigate the efficacy of the recombinant protein vaccine, ABA392/pET30a via intranasal inoculation by targeting the mucosal immunity. The constructed recombinant protein vaccine ABA392/pET30a was subjected to an animal study using Sprague Dawley rats. The study was divided into two parts: active and passive immunization studies. Both studies were carried out through the determination of immunogenicity (using Total White Blood Cell (TWBC) Count with Indirect ELISA) and histopathogenicity, analyzing (Bronchus Associated Lymphoid Tissue (BALT) formation) in lungs. As a result, the IgA and IgG development of both tested groups: group 1 (50μg/mL protein vaccine) and group 2 (100μg/mL protein vaccine) showed equivalent with the positive control group 4 (formalin-killed P. multocida B:2). However, there was a significant difference when compared with the negative control group 3 (normal saline). These results demonstrate that both the protein vaccine at the concentration 50μg/mL and 100μg/mL have the same efficacy as the commercially available positive control vaccine. From the studies, higher concentration of protein vaccine at 100μg/mL showed higher development of both IgA and IgG compared to 50μg/mL protein vaccine. Higher and rapid development of IgA compared to IgG showed that mucosal immunity has been induced through the intranasal administration of the protein vaccine. In addition, leucocytosis was observed at each dose of vaccination showed that the protein vaccine is capable to induce the immune responses of the host. Histopathogenicity studies of the vaccinated groups showed more BALT formation and no severe lesions after challenge compared to the negative control group. Besides, no inflammatory onsite or anaphylactic responses were observed after the intranasal inoculation which proved to be safer and provided longer lasting immunity. Therefore, recombinant protein vaccine ABA392/pET30a could be a potential candidate for intranasal administration which can provoke mucosal immunity against HS disease.
    Matched MeSH terms: Administration, Intranasal
  16. Hussein EA, Hair-Bejo M, Adamu L, Omar AR, Arshad SS, Awad EA, et al.
    Vet Med Int, 2018;2018:9296520.
    PMID: 30631413 DOI: 10.1155/2018/9296520
    Newcastle disease virus strains are velogenic, mesogenic, and lentogenic. This study aims to design a scoring system for lesions induced by different strains of Newcastle disease virus in chicken. Three experiments were conducted. In experiments 1 and 2, chickens were divided into infected and control groups. Infected groups of experiments 1 and 2 consisted of 6 and 24 specific pathogen-free (SPF) chickens, respectively. Control groups in experiments 1 and 2 consisted of 6 and 15 SPF chickens, respectively. In infected groups, infection was induced by intranasal administration of 105 50% EID50/0.1 mL of velogenic Newcastle disease virus strain (vNDV). Infected chickens in experiment 1 were euthanised by cervical dislocation on days 3, 6, and 7 postinoculation (pi). Infected chickens in experiment 2 were euthanised at hours (hrs) 2, 4, 6, 12 and days 1, 2, 4, and 6 pi. Chickens of the control group in experiment 1 were euthanised on days 3 and 7 pi, whereas control group chickens in experiment 2 were euthanised on days 0, 1, 2, 4, and 6 pi. Then in experiment 3, 15 SPF chickens were divided into three groups; in the first group, 5 SPF chickens were infected with vNDV, in the second group, 5 SPF chickens were infected with lentogenic NDV (lNDV) (103.0 EID50/0.1 mL), and the third group was kept without infection as a control group. Chickens were euthanised on day 5 pi. In all previous experiments, tissues of brain, trachea, lung, caecal tonsil, liver, kidney, spleen, heart, proventriculus, intestine, and thymus were collected, fixed in 10% buffered formalin, embedded in paraffin, and sectioned. HS staining was applied. Tissues were examined under light microscope and changes were recorded. A scoring system was designed for lesions induced by different strains of NDV and, accordingly, lesions were scored. The scoring system was found helpful in the evaluation of disease severity.
    Matched MeSH terms: Administration, Intranasal
  17. See GL, Arce F, Dahlizar S, Okada A, Fadli MFBM, Hijikuro I, et al.
    J Control Release, 2020 Sep 10;325:1-9.
    PMID: 32598958 DOI: 10.1016/j.jconrel.2020.06.028
    Intranasal administration is poised as a competent method in delivering drugs to the brain, because the nasal route has a direct link with the central nervous system bypassing the formidable blood-brain barrier. C17-monoglycerol ester (MGE) and glyceryl monooleate (GMO) as liquid crystal (LC)-forming lipids possess desirable formulation characteristics as drug carriers for intranasally administered drugs. This study investigated the effect of LC formulations on the pharmacokinetics of tranilast (TL), a lipophilic model drug, and its distribution in the therapeutic target regions of the brain in rats. The anatomical biodistribution of LC formulations was monitored using micro-computed tomography tandem in vivo imaging systems. MGE and GMO effectively formed LC with suitable particle size, zeta potential, and viscosity supporting the delivery of TL to the brain. MGE and GMO LC formulations enhanced brain uptake by 10- to 12-fold and 2- to 2.4- fold, respectively, compared with TL solution. The olfactory bulb had the highest TL concentration and fluorescent signals among all the brain regions, indicating a direct nose-to-brain delivery pathway of LC formulations. LC-forming lipids, MGE and GMO, are potential biomaterials in formulations intended for intranasal administration.
    Matched MeSH terms: Administration, Intranasal
  18. Muhamad SA, Muhammad NS, Ismail NDA, Mohamud R, Safuan S, Nurul AA
    Exp Ther Med, 2019 May;17(5):3867-3876.
    PMID: 30988772 DOI: 10.3892/etm.2019.7416
    Asthma is a chronic inflammatory disorder in the airways that involves the activation of cells and mediators. Lignosus rhinocerotis (Cooke) Ryvardan or Tiger Milk mushroom is a medicinal mushroom that is traditionally used to treat inflammatory diseases including asthma. In this study, the protective effects of intranasal administration of L. rhinocerotis extract (LRE) in ovalbumin (OVA)-induced airway inflammation mouse model were investigated. Mice were sensitized by intraperitoneal (i.p) injection on days 0 and 14, followed by a daily challenge with 1% OVA from days 21 to 27. Following OVA challenge, LRE and dexamethasone were administered via intranasal and i.p. injection respectively. On day 28, the level of serum immunoglobulin (Ig)E, differential cell counts and T-helper (Th) 2 cytokines in bronchoalveolar lavage fluid (BALF) fluid, cell subset population in lung-draining lymph nodes (LNs), leukocytes infiltration and mucus production in the lungs of the animals was measured. Results demonstrated that intranasal administration of LRE significantly suppressed the level of inflammatory cell counts in BALF as well as populations of CD4+ T-cells in lung draining LNs. Apart from that, LRE also significantly reduced the level of Th2 cytokines in BALF and IgE in the serum in OVA-induced asthma. Histological analysis also demonstrated the amelioration of leukocytes infiltration and mucus production in the lungs. Overall, these findings demonstrated the attenuation of airway inflammation in the LRE-treated mice therefore suggesting a promising alternative for the management of allergic airway inflammation.
    Matched MeSH terms: Administration, Intranasal
  19. Ghafar MHA, Mohamed H, Mohammad NMY, Mohammad ZW, Madiadipoera T, Wang Y, et al.
    Acta Otorrinolaringol Esp (Engl Ed), 2019 08 07;71(3):147-153.
    PMID: 31400807 DOI: 10.1016/j.otorri.2019.04.004
    INTRODUCTION: The use of mometasone furoate (MF) intranasal spray in treating adenoid hypertrophy (AH) has a variable outcome due the different methods of adenoid size evaluation. The aim of our study was to evaluate the effect of MF intranasal spray in children and adolescents with AH using a reliable and consistent endoscopic evaluation.

    MATERIAL AND METHOD: A prospective interventional study was conducted. Evaluation took place during the first visit (week 0) and second visit (week 12). Symptoms of nasal obstruction, rhinorrhoea, cough and snoring were assessed, and an overall total symptoms score was obtained. A rigid nasoendoscopic examination using a four-grading system of adenoid size from 1 to 4 was performed. Patients were treated with MF intranasal spray for 12 weeks. Patients' aged 7-11-years old used 1 spray in each nostril once daily, while patients aged 12-17 used two sprays in each nostril once daily. Reassessment was carried out during the second visit (week 12).

    RESULTS: A total of 74 patients was recruited. There were significant improvements from week 0 to week 12 in the symptoms' score for nose obstruction, rhinorrhoea, cough, snoring including the total nasal symptoms' score (p<0.001). AH significantly reduced in size from week 0 (2.89±.87) to week 12 (1.88±.83) (p<0.001).

    CONCLUSION: MF intranasal spray is effective in improving the symptoms attributed to AH as well as reducing the adenoid size. MF intranasal spray is advocated as a treatment option before adenoidectomy is considered.

    Matched MeSH terms: Administration, Intranasal
  20. Pandey M, Choudhury H, Verma RK, Chawla V, Bhattamisra SK, Gorain B, et al.
    CNS Neurol Disord Drug Targets, 2020;19(9):648-662.
    PMID: 32819251 DOI: 10.2174/1871527319999200819095620
    Alzheimer Association Report (2019) stated that the 6th primary cause of death in the USA is Alzheimer's Disease (AD), which leads to behaviour and cognitive impairment. Nearly 5.8 million peoples of all ages in the USA have suffered from this disease, including 5.6 million elderly populations. The statistics of the progression of this disease is similar to the global scenario. Still, the treatment of AD is limited to a few conventional oral drugs, which often fail to deliver an adequate amount of the drug in the brain. The reduction in the therapeutic efficacy of an anti-AD drug is due to poor solubility, existence to the blood-brain barrier and low permeability. In this context, nasal drug delivery emerges as a promising route for the delivery of large and small molecular drugs for the treatment of AD. This promising pathway delivers the drug directly into the brain via an olfactory route, which leads to the low systemic side effect, enhanced bioavailability, and higher therapeutic efficacy. However, few setbacks, such as mucociliary clearance and poor drug mucosal permeation, limit its translation from the laboratory to the clinic. The above stated limitation could be overcome by the adaption of nanoparticle as a drug delivery carrier, which may lead to prolong delivery of drugs with better permeability and high efficacy. This review highlights the latest work on the development of promising Nanoparticles (NPs) via the intranasal route for the treatment of AD. Additionally, the current update in this article will draw the attention of the researcher working on these fields and facing challenges in practical applicability.
    Matched MeSH terms: Administration, Intranasal
Contact Us

Please provide feedback to Administrator (tengcl@gmail.com)

External Links