Displaying all 13 publications

Abstract:
Sort:
  1. Azizan EA, Brown MJ
    Curr Opin Endocrinol Diabetes Obes, 2016 06;23(3):209-17.
    PMID: 26992195 DOI: 10.1097/MED.0000000000000255
    PURPOSE OF REVIEW: Aldosterone regulation in the adrenal plays an important role in blood pressure. The commonest curable cause of hypertension is primary aldosteronism. Recently, mutations in novel genes have been identified to cause primary aldosteronism. Elucidating the mechanism of action of these genetic abnormalities may help understand the cause of primary aldosteronism and the physiological regulation of aldosterone in the zona glomerulosa.

    RECENT FINDINGS: KCNJ5, ATP1A1, ATP2B3, CACNA1D, CTNNB1, and CACNA1H mutations are causal of primary aldosteronism. ARMC5 may cause bilateral lesions resulting in primary aldosteronism.LGR5, DACH1, and neuron-specific proteins are highly expressed in the zona glomerulosa and regulate aldosterone production.

    SUMMARY: Most mutations causing primary aldosteronism are in genes encoding cation channels or pumps, leading to increased calcium influx. Genotype-phenotype analyses identified two broad subtypes of aldosterone-producing adenomas (APAs), zona fasciculata-like and zona glomerulosa-like, and the likelihood of under-diagnosed zona glomerulosa-like APAs because of small size. Zona fasciculata-like APAs are only associated with KCNJ5 mutations, whereas zona glomerulosa-like APAs are associated with mutations in ATPase pumps, CACNA1D, and CTNNB1. The frequency of APAs, and the multiplicity of causal mutations, suggests a pre-existing drive for these mutations. We speculate that these mutations are selected for protecting against tonic inhibition of aldosterone in human zona glomerulosa, which express genes inhibiting aldosterone production.

    Matched MeSH terms: Aldosterone/metabolism*
  2. Azizan EAB, Drake WM, Brown MJ
    Nat Rev Nephrol, 2023 Dec;19(12):788-806.
    PMID: 37612380 DOI: 10.1038/s41581-023-00753-6
    Primary aldosteronism is the most common single cause of hypertension and is potentially curable when only one adrenal gland is the culprit. The importance of primary aldosteronism to public health derives from its high prevalence but huge under-diagnosis (estimated to be <1% of all affected individuals), despite the consequences of poor blood pressure control by conventional therapy and enhanced cardiovascular risk. This state of affairs is attributable to the fact that the tools used for diagnosis or treatment are still those that originated in the 1970-1990s. Conversely, molecular discoveries have transformed our understanding of adrenal physiology and pathology. Many molecules and processes associated with constant adrenocortical renewal and interzonal metamorphosis also feature in aldosterone-producing adenomas and aldosterone-producing micronodules. The adrenal gland has one of the most significant rates of non-silent somatic mutations, with frequent selection of those driving autonomous aldosterone production, and distinct clinical presentations and outcomes for most genotypes. The disappearance of aldosterone synthesis and cells from most of the adult human zona glomerulosa is the likely driver of the mutational success that causes aldosterone-producing adenomas, but insights into the pathways that lead to constitutive aldosterone production and cell survival may open up opportunities for novel therapies.
    Matched MeSH terms: Aldosterone/metabolism
  3. Loh HH, Sukor N
    J Hum Hypertens, 2020 01;34(1):5-15.
    PMID: 31822780 DOI: 10.1038/s41371-019-0294-8
    Primary aldosteronism (PA), the most common cause of secondary hypertension, is a well-recognized condition that can lead to cardiovascular and renal complications. PA is frequently left undiagnosed and untreated, leading to aldosterone-specific morbidity and mortality. In this review we highlight the evidence linking PA with other conditions such as (i) diabetes mellitus, (ii) obstructive sleep apnea, and (iii) bone health, along with clinical implications and proposed underlying mechanisms.
    Matched MeSH terms: Aldosterone/metabolism*
  4. Tan YJD, Brooks DL, Wong KYH, Huang Y, Romero JR, Williams JS, et al.
    J Endocrinol, 2023 Jan 01;256(1).
    PMID: 36327153 DOI: 10.1530/JOE-22-0141
    Biologic sex influences the development of cardiovascular disease and modifies aldosterone (ALDO) and blood pressure (BP) phenotypes: females secrete more ALDO, and their adrenal glomerulosa cell is more sensitive to stimulation. Lysine-specific demethylase 1 (LSD1) variants in Africans and LSD1 deficiency in mice are associated with BP and/or ALDO phenotypes. This study, in 18- and 40-week-old wild type (WT) and LSD1+/- mice, was designed to determine whether (1) sex modifies ALDO biosynthetic enzymes; (2) LSD1 deficiency disrupts the effect of sex on these enzymes; (3) within each genotype, there is a positive relationship between ALDO biosynthesis (proximate phenotype), plasma ALDO (intermediate phenotype) and BP levels (distant phenotype); and (4) sex and LSD1 genotype interact on these phenotypes. In WT mice, female sex increases the expression of early enzymes in ALDO biosynthesis but not ALDO levels or systolic blood pressure (SBP). However, enzyme expressions are shifted downward in LSD1+/- females vs males, so that early enzyme levels are similar but the late enzymes are substantially lower. In both age groups, LSD1 deficiency modifies the adrenal enzyme expressions, circulating ALDO levels, and SBP in a sex-specific manner. Finally, significant sex/LSD1 genotype interactions modulate the three phenotypes in mice. In conclusion, biologic sex in mice interacts with LSD1 deficiency to modify several phenotypes: (1) proximal (ALDO biosynthetic enzymes); (2) intermediate (circulating ALDO); and (3) distant (SBP). These results provide entry to better understand the roles of biological sex and LSD1 in (1) hypertension heterogeneity and (2) providing more personalized treatment.
    Matched MeSH terms: Aldosterone/metabolism
  5. Balakumar P, Anand-Srivastava MB, Jagadeesh G
    Pharmacol Res, 2017 11;125(Pt A):1-3.
    PMID: 28711403 DOI: 10.1016/j.phrs.2017.07.003
    Matched MeSH terms: Aldosterone/metabolism*
  6. Harvey BJ, Thomas W
    Steroids, 2018 05;133:67-74.
    PMID: 29079406 DOI: 10.1016/j.steroids.2017.10.009
    Aldosterone acts through the mineralocorticoid receptor (MR) to modulate gene expression in target tissues. In the kidney, the principal action of aldosterone is to promote sodium conservation in the distal nephron and so indirectly enhance water conservation under conditions of hypotension. Over the last twenty years the rapid activation of protein kinase signalling cascades by aldosterone has been described in various tissues. This review describes the integration of rapid protein kinase D signalling responses with the non-genomic actions of aldosterone and transcriptional effects of MR activation.
    Matched MeSH terms: Aldosterone/metabolism*
  7. Xie CB, Shaikh LH, Garg S, Tanriver G, Teo AE, Zhou J, et al.
    Sci Rep, 2016 Apr 21;6:24697.
    PMID: 27098837 DOI: 10.1038/srep24697
    Aldosterone-producing adenomas (APAs) vary in phenotype and genotype. Zona glomerulosa (ZG)-like APAs frequently have mutations of an L-type calcium channel (LTCC) CaV1.3. Using a novel antagonist of CaV1.3, compound 8, we investigated the role of CaV1.3 on steroidogenesis in the human adrenocortical cell line, H295R, and in primary human adrenal cells. This investigational drug was compared with the common antihypertensive drug nifedipine, which has 4.5-fold selectivity for the vascular LTCC, CaV1.2, over CaV1.3. In H295R cells transfected with wild-type or mutant CaV1.3 channels, the latter produced more aldosterone than wild-type, which was ameliorated by 100 μM of compound 8. In primary adrenal and non-transfected H295R cells, compound 8 decreased aldosterone production similar to high concentration of nifedipine (100 μM). Selective CaV1.3 blockade may offer a novel way of treating primary hyperaldosteronism, which avoids the vascular side effects of CaV1.2-blockade, and provides targeted treatment for ZG-like APAs with mutations of CaV1.3.
    Matched MeSH terms: Aldosterone/metabolism*
  8. Sakthiswary R, Wong M, Isa ZM, Nor Azmi K
    Clin Ter, 2012;163(3):195-8.
    PMID: 22964690
    Treatment with angiotensin converting enzyme inhibitors (ACEIs) or angiotensin receptor blockers (ARBs) may suppress aldosterone production only in the initial phase of treatment and subsequently lead to a rising level of aldosterone to baseline or higher. This phenomenon is described as aldosterone breakthrough. Apart from serial plasma aldosterone levels, there are no other test to identify this condition. The purpose of this study was to evaluate the role of spot urine potassium as a potential screening test for aldosterone breakthrough.
    Matched MeSH terms: Aldosterone/metabolism*
  9. Gupta G, Dahiya R, Singh Y, Mishra A, Verma A, Gothwal SK, et al.
    Chem Biol Interact, 2020 Feb 01;317:108975.
    PMID: 32032593 DOI: 10.1016/j.cbi.2020.108975
    In patients with acute kidney injury progressively converting into chronic kidney disease (CKD), proteinuria and high blood pressure predict progression to end-stage renal disease (ESRD). Although, Renin-angiotensin-aldosterone system (RAAS) regulates blood pressure and kidney disease through both direct and indirect mechanisms. RAAS blockers that act at the level of angiotensin or lower in the cascade can cause compensatory increases in the plasma renin and angiotensin II level. Here, in this review article, we are exploring the evidence-based on RAAS blockade action releases of aldosterone and hypothesizing the molecular mechanism for converting the acute kidney injury into chronic kidney disease to end-stage renal disease.
    Matched MeSH terms: Aldosterone/metabolism*
  10. Tan GC, Negro G, Pinggera A, Tizen Laim NMS, Mohamed Rose I, Ceral J, et al.
    Hypertension, 2017 07;70(1):129-136.
    PMID: 28584016 DOI: 10.1161/HYPERTENSIONAHA.117.09057
    Mutations in KCNJ5, ATP1A1, ATP2B3, CACNA1D, and CTNNB1 are thought to cause the excessive autonomous aldosterone secretion of aldosterone-producing adenomas (APAs). The histopathology of KCNJ5 mutant APAs, the most common and largest, has been thoroughly investigated and shown to have a zona fasciculata-like composition. This study aims to characterize the histopathologic spectrum of the other genotypes and document the proliferation rate of the different sized APAs. Adrenals from 39 primary aldosteronism patients were immunohistochemically stained for CYP11B2 to confirm diagnosis of an APA. Twenty-eight adenomas had sufficient material for further analysis and were target sequenced at hot spots in the 5 causal genes. Ten adenomas had a KCNJ5 mutation (35.7%), 7 adenomas had an ATP1A1 mutation (25%), and 4 adenomas had a CACNA1D mutation (14.3%). One novel mutation in exon 28 of CACNA1D (V1153G) was identified. The mutation caused a hyperpolarizing shift of the voltage-dependent activation and inactivation and slowed the channel's inactivation kinetics. Immunohistochemical stainings of CYP17A1 as a zona fasciculata cell marker and Ki67 as a proliferation marker were used. KCNJ5 mutant adenomas showed a strong expression of CYP17A1, whereas ATP1A1/CACNA1D mutant adenomas had a predominantly negative expression (P value =1.20×10-4). ATP1A1/CACNA1D mutant adenomas had twice the nuclei with intense staining of Ki67 than KCNJ5 mutant adenomas (0.7% [0.5%-1.9%] versus 0.4% [0.3%-0.7%]; P value =0.04). Further, 3 adenomas with either an ATP1A1 mutation or a CACNA1D mutation had >30% nuclei with moderate Ki67 staining. In summary, similar to KCNJ5 mutant APAs, ATP1A1 and CACNA1D mutant adenomas have a seemingly specific histopathologic phenotype.
    Matched MeSH terms: Aldosterone/metabolism*
  11. Gholami SK, Tay CS, Lee JM, Zagoren E, Maris SA, Wong JY, et al.
    J Endocrinol, 2021 11 24;252(1):1-13.
    PMID: 34643545 DOI: 10.1530/JOE-21-0126
    Inconsistencies have been reported on the effect of sex on aldosterone (ALDO) levels leading to clinical confusion. The reasons for these inconsistencies are uncertain but include estrogen and/or its receptor modulating target gene responses to mineralocorticoid receptor activation and ALDO secretagogues' levels. This study's goal was to determine whether ALDO's biosynthesis also differed by sex. Two approaches were used. First, plasma renin activity and aldosterone were measured in rats. Both were significantly higher in males. Secondly, using rat zona glomerulosa (ZG) cells, we assessed three ex vivo areas: (1) activity/levels of early steps in ALDO's biosynthesis (StAR and CYP11A1); (2) activity/levels of a late step (CYP11B2); and (3) the status of the mineralocorticoid receptor (MR)-mediated, ultrashort feedback loop. Females had higher expression of CYP11A1 and StAR and increased CYP11A1 activity (increased pregnenolone/corticosterone levels) but did not differ in CYP11B2 expression or activity (ALDO levels). Activating the ZG's MR (thereby activating the ultrashort feedback loop) reduced CYP11B2's activity similarly in both sexes. Exvivo, these molecular effects were accompanied, in females, by lower ALDO basally but higher ALDO with angiotensin II stimulation. In conclusion, we documented that not only was there a sex-mediated difference in the activity of ALDO's biosynthesis but also these differences at the molecular level help explain the variable reports on ALDO's circulating levels. Basally, both in vivo and ex vivo, males had higher ALDO levels, likely secondary to higher ALDO secretagogue levels. However, in response to acute stimulation, ALDO levels are higher in females because of the greater levels and/or activity of their StAR/CYP11A1.
    Matched MeSH terms: Aldosterone/metabolism*
  12. Zhou J, Lam B, Neogi SG, Yeo GS, Azizan EA, Brown MJ
    Hypertension, 2016 12;68(6):1424-1431.
    PMID: 27777363
    Primary aldosteronism is present in ≈10% of hypertensives. We previously performed a microarray assay on aldosterone-producing adenomas and their paired zona glomerulosa and fasciculata. Confirmation of top genes validated the study design and functional experiments of zona glomerulosa selective genes established the role of the encoded proteins in aldosterone regulation. In this study, we further analyzed our microarray data using AmiGO 2 for gene ontology enrichment and Ingenuity Pathway Analysis to identify potential biological processes and canonical pathways involved in pathological and physiological aldosterone regulation. Genes differentially regulated in aldosterone-producing adenoma and zona glomerulosa were associated with steroid metabolic processes gene ontology terms. Terms related to the Wnt signaling pathway were enriched in zona glomerulosa only. Ingenuity Pathway Analysis showed "NRF2-mediated oxidative stress response pathway" and "LPS (lipopolysaccharide)/IL-1 (interleukin-1)-mediated inhibition of RXR (retinoid X receptor) function" were affected in both aldosterone-producing adenoma and zona glomerulosa with associated genes having up to 21- and 8-fold differences, respectively. Comparing KCNJ5-mutant aldosterone-producing adenoma, zona glomerulosa, and zona fasciculata samples with wild-type samples, 138, 56, and 59 genes were differentially expressed, respectively (fold-change >2; P<0.05). ACSS3, encoding the enzyme that synthesizes acetyl-CoA, was the top gene upregulated in KCNJ5-mutant aldosterone-producing adenoma compared with wild-type. NEFM, a gene highly upregulated in zona glomerulosa, was upregulated in KCNJ5 wild-type aldosterone-producing adenomas. NR4A2, the transcription factor for aldosterone synthase, was highly expressed in zona fasciculata adjacent to a KCNJ5-mutant aldosterone-producing adenoma. Further interrogation of these genes and pathways could potentially provide further insights into the pathology of primary aldosteronism.
    Matched MeSH terms: Aldosterone/metabolism*
  13. Tan JW, Gupta T, Manosroi W, Yao TM, Hopkins PN, Williams JS, et al.
    JCI Insight, 2017 12 07;2(23).
    PMID: 29212952 DOI: 10.1172/jci.insight.95992
    Compared with persons of European descent (ED), persons of African descent (AD) have lower aldosterone (ALDO) levels, with the assumption being that the increased cardiovascular disease (CVD) risk associated with AD is not related to ALDO. However, the appropriateness of the ALDO levels for the volume status in AD is unclear. We hypothesized that, even though ALDO levels are lower in AD, they are inappropriately increased, and therefore, ALDO could mediate the increased CVD in AD. To test this hypothesis, we analyzed data from HyperPATH - 1,788 individuals from the total cohort and 765 restricted to ED-to-AD in a 2:1 match and genotyped for the endothelin-1 gene (EDN1). Linear regression analyses with adjustments were performed. In the total and restricted cohorts, PRA, ALDO, and urinary potassium levels were significantly lower in AD. However, in the AD group, greater ALDO dysregulation was present as evidenced by higher ALDO/plasma renin activity (PRA) ratios (ARR) and sodium-modulated ALDO suppression-to-stimulation indices. Furthermore, EDN1 minor allele carriers had significantly greater ARRs than noncarriers but only in the AD group. ARR levels were modulated by a significant interaction between EDN1 and AD. Thus, EDN1 variants may identify particularly susceptible ADs who will be responsive to treatment targeting ALDO-dependent pathways (e.g., mineralocorticoid-receptor antagonists).
    Matched MeSH terms: Aldosterone/metabolism*
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links