METHODS: A double-blinded, placebo-controlled prospective interventional study was conducted in school children aged 8-14 years. The study participants were divided into four groups depending upon the mouthwash used: Group 1 (aloe vera), Group 2 (chlorhexidine), Group 3 (tea tree oil) and Group 4 (placebo). The variables studied included plaque index, gingival index and salivary Streptococcus mutans counts, which were recorded at baseline, 4 weeks after supervised mouth rinse and after 2 weeks of stopping the mouth rinse.
RESULTS: A total of 89 boys and 63 girls were included. A statistically significant decrease in all variables was noted after the use of both the herbal preparations at the end of 4 weeks which was maintained after the 2-week washout period (p
Objective: The objective of this study is to determine the antimicrobial effects of MP, AV, and MP + AV in comparison with Ca(OH)2 against E. faecalis, as an intracanal medicament.
Materials and Methods: Antimicrobial activity of MP, AV, MP + AV, Ca(OH)2, and dimethyl sulfoxide was tested against E. faecalis using antimicrobial sensitivity testing, minimum inhibitory concentration (MIC), and minimum bactericidal concentration (MBC). The results were analyzed by Kruskal-Wallis test with Mann-Whitney post hoc test and repeated measures analysis of variance with Bonferroni post hoc test (P < 0.05).
Results: For agar well-diffusion method, MP + AV gave maximum inhibition zone diameter (mean: 8.11 ± 0.015 mm), MP (mean: 6.21 ± 0.046 mm, Ca(OH)2 (mean: 5.5 ± 0.006), and AV (mean: 5.05 ± 0.012) with P < 0.05. MIC for MP + AV was 2 mg/ml, MP at 8 mg/ml, Ca(OH)2 at 8 mg/ml, and AV at 16 mg/ml. The MBC for MP + AV is at 4 mg/ml, MP at 16 mg/ml, Ca(OH)2 at 16 mg/ml, and AV at 32 mg/ml.
Conclusion: The combination of MP and AV consistently showed better antimicrobial activity compared to MP and AV alone against E. faecalis. The findings suggest that MP and AV used in combination may be an ideal intracanal medicament in FET and PET.
METHODS AND RESULTS: Symptomatic leaves of S. trifasciata were collected from five states in Malaysia. The causal pathogen was isolated and identified for the first time in Malaysia as C. sansevieriae based on morphological and multi-gene phylogenetic analyses using ITS, TUB2 and GAPDH sequences. Pathogenicity tests were conducted on different hosts. Colletotrichum sansevieriae was not pathogenic towards S. cylindrica, S. masoniana, Furcraea foetida, Chlorophytum comosum, Aloe vera and Gasteria carinata, confirming the exceptionally high host specificity for a species of Colletotrichum. Histopathology was performed using light microscope and scanning electron microscopy to study the infection process of C. sansevieriae on S. trifasciata. Colonization of host leaves by the pathogen was observed 2 days after inoculation.
CONCLUSIONS: Colletotrichum sansevieriae caused anthracnose of S. trifasciata in Malaysia. It is a host-specific pathogen and colonized the host intracellularly.
SIGNIFICANCE AND IMPACT OF THE STUDY: This is the first report of C. sansevieriae causing anthracnose of S. trifasciata in Malaysia. The host range test and understanding of the infection process will provide better understanding of the host-pathogen relationship and beneficial for effective disease management.
Objectives: The aim of this study was to prepare magnetic/bacterial nanocellulose (Fe3O4/BNC) nanocomposite films as ecofriendly wound dressing in order to evaluate their physical, cytotoxicity and antimicrobial properties. The molecular study was carried out to evaluate expression of genes involved in healing of wounds after treatment with BNC/Fe3O4 films.
Study design materials and methods: Magnetic nanoparticles were biosynthesized by using Aloe vera extract in new isolated bacterial nanocellulose (BNC) RM1. The nanocomposites were characterized using X-ray diffraction, Fourier transform infrared, and field emission scanning electron microscopy. Moreover, swelling property and metal ions release profile of the nanocomposites were investigated. The ability of nanocomposites to promote wound healing of human dermal fibroblast cells in vitro was examined. Bioinformatics databases were used to identify genes with important healing effect. Key genes which interfered with healing were studied by quantitative real time PCR.
Results: Spherical magnetic nanoparticles (15-30 nm) were formed and immobilized within the structure of BNC. The BNC/Fe3O4 was nontoxic (IC50>500 μg/mL) with excellent wound healing efficiency after 48 hours. The nanocomposites showed good antibacterial activity ranging from 6±0.2 to 13.40±0.10 mm against Staphylococcus aureus, Staphylococcus epidermidis and Pseudomonas aeruginosa. The effective genes for the wound healing process were TGF-B1, MMP2, MMP9, Wnt4, CTNNB1, hsa-miR-29b, and hsa-miR-29c with time dependent manner. BNC/Fe3O4 has an effect on microRNA by reducing its expression and therefore causing an increase in the gene expression of other genes, which consequently resulted in wound healing.
Conclusion: This eco-friendly nanocomposite with excellent healing properties can be used as an effective wound dressing for treatment of cutaneous wounds.