Displaying publications 1 - 20 of 495 in total

Abstract:
Sort:
  1. Wong Z, Ong EBB
    Arch Microbiol, 2024 Jun 15;206(7):303.
    PMID: 38878203 DOI: 10.1007/s00203-024-04023-2
    Pathogenic bacteria employ virulence factors (VF) to establish infection and cause disease in their host. Yeasts, Saccharomyces cerevisiae and Saccharomyces pombe, are useful model organisms to study the functions of bacterial VFs and their interaction with targeted cellular processes because yeast processes and organelle structures are highly conserved and similar to higher eukaryotes. In this review, we describe the principles and applications of the yeast model for the identification and functional characterisation of bacterial VFs to investigate bacterial pathogenesis. The growth inhibition phenotype caused by the heterologous expression of bacterial VFs in yeast is commonly used to identify candidate VFs. Then, subcellular localisation patterns of bacterial VFs can provide further clues about their target molecules and functions during infection. Yeast knockout and overexpression libraries are also used to investigate VF interactions with conserved eukaryotic cell structures (e.g., cytoskeleton and plasma membrane), and cellular processes (e.g., vesicle trafficking, signalling pathways, and programmed cell death). In addition, the yeast growth inhibition phenotype is also useful for screening new drug leads that target and inhibit bacterial VFs. This review provides an updated overview of new tools, principles and applications to study bacterial VFs in yeast.
    Matched MeSH terms: Bacterial Proteins/genetics; Bacterial Proteins/metabolism
  2. Tahir Ul Qamar M, Ahmad S, Khan A, Mirza MU, Ahmad S, Abro A, et al.
    Comput Biol Med, 2021 11;138:104929.
    PMID: 34655900 DOI: 10.1016/j.compbiomed.2021.104929
    Cholera is a severe small intestine bacterial disease caused by consumption of water and food contaminated with Vibrio cholera. The disease causes watery diarrhea leading to severe dehydration and even death if left untreated. In the past few decades, V. cholerae has emerged as multidrug-resistant enteric pathogen due to its rapid ability to adapt in detrimental environmental conditions. This research study aimed to design inhibitors of a master virulence gene expression regulator, HapR. HapR is critical in regulating the expression of several set of V. cholera virulence genes, quorum-sensing circuits and biofilm formation. A blind docking strategy was employed to infer the natural binding tendency of diverse phytochemicals extracted from medicinal plants by exposing the whole HapR structure to the screening library. Scoring function criteria was applied to prioritize molecules with strong binding affinity (binding energy 
    Matched MeSH terms: Bacterial Proteins/genetics; Bacterial Proteins/metabolism
  3. Zamakhaev M, Grigorov A, Bespyatykh J, Azhikina T, Goncharenko A, Shumkov M
    Arch Microbiol, 2022 Dec 15;205(1):28.
    PMID: 36520276 DOI: 10.1007/s00203-022-03363-1
    Mycobacterium tuberculosis is an extremely successful pathogen known for its ability to cause latent infection. The latter is connected with the bacterium resting state development and is considered to be based on the activity of toxin-antitoxin (TA) systems at least in part. Here we studied the physiological and proteomic consequences of VapC toxin overexpression together with the features of the protein synthesis apparatus and compared them with the characteristics of dormant mycobacterial cells in an M. smegmatis model. The findings allow suggesting the mechanism mycobacteria enter dormancy, which is realized through VapC-caused cleavage of the 23S rRNA Sarcin-Ricin loop followed by conservation of stalled ribosomes in a membrane-associated manner. The found features of resting mycobacteria protein synthesis apparatus hypothesize the mechanisms of resuscitation from dormancy through the ribosomes de-association off the membrane accompanied by the 23S rRNA break curing, and could be of value for the development of principally new antituberculosis agents.
    Matched MeSH terms: Bacterial Proteins/genetics; Bacterial Proteins/metabolism
  4. Nyanasegran PK, Nathan S, Firdaus-Raih M, Muhammad NAN, Ng CL
    J Microbiol Biotechnol, 2023 Jan 28;33(1):15-27.
    PMID: 36451302 DOI: 10.4014/jmb.2207.07032
    The incidence of melioidosis cases caused by the gram-negative pathogen Burkholderia pseudomallei (BP) is seeing an increasing trend that has spread beyond its previously known endemic regions. Biofilms produced by BP have been associated with antimicrobial therapy limitation and relapse melioidosis, thus making it urgently necessary to understand the mechanisms of biofilm formation and their role in BP biology. Microbial cells aggregate and enclose within a self-produced matrix of extracellular polymeric substances (EPSs) to form biofilm. The transition mechanism of bacterial cells from planktonic state to initiate biofilm formation, which involves the formation of surface attachment microcolonies and the maturation of the biofilm matrix, is a dynamic and complex process. Despite the emerging findings on the biofilm formation process, systemic knowledge on the molecular mechanisms of biofilm formation in BP remains fractured. This review provides insights into the signaling systems, matrix composition, and the biosynthesis regulation of EPSs (exopolysaccharide, eDNA and proteins) that facilitate the formation of biofilms in order to present an overview of our current knowledge and the questions that remain regarding BP biofilms.
    Matched MeSH terms: Bacterial Proteins/genetics; Bacterial Proteins/metabolism
  5. Chan WT, Garcillán-Barcia MP, Yeo CC, Espinosa M
    FEMS Microbiol Rev, 2023 Sep 05;47(5).
    PMID: 37715317 DOI: 10.1093/femsre/fuad052
    Toxin-antitoxin (TA) systems are entities found in the prokaryotic genomes, with eight reported types. Type II, the best characterized, is comprised of two genes organized as an operon. Whereas toxins impair growth, the cognate antitoxin neutralizes its activity. TAs appeared to be involved in plasmid maintenance, persistence, virulence, and defence against bacteriophages. Most Type II toxins target the bacterial translational machinery. They seem to be antecessors of Higher Eukaryotes and Prokaryotes Nucleotide-binding (HEPN) RNases, minimal nucleotidyltransferase domains, or CRISPR-Cas systems. A total of four TAs encoded by Streptococcus pneumoniae, RelBE, YefMYoeB, Phd-Doc, and HicAB, belong to HEPN-RNases. The fifth is represented by PezAT/Epsilon-Zeta. PezT/Zeta toxins phosphorylate the peptidoglycan precursors, thereby blocking cell wall synthesis. We explore the body of knowledge (facts) and hypotheses procured for Type II TAs and analyse the data accumulated on the PezAT family. Bioinformatics analyses showed that homologues of PezT/Zeta toxin are abundantly distributed among 14 bacterial phyla mostly in Proteobacteria (48%), Firmicutes (27%), and Actinobacteria (18%), showing the widespread distribution of this TA. The pezAT locus was found to be mainly chromosomally encoded whereas its homologue, the tripartite omega-epsilon-zeta locus, was found mostly on plasmids. We found several orphan pezT/zeta toxins, unaccompanied by a cognate antitoxin.
    Matched MeSH terms: Bacterial Proteins/genetics; Bacterial Proteins/metabolism
  6. Siddiqui Q, Ali MSM, Leow ATC, Oslan SN, Mohd Shariff F
    J Biomol Struct Dyn, 2023 Dec;41(20):10347-10367.
    PMID: 36510668 DOI: 10.1080/07391102.2022.2154845
    Leptospirosis is one of the neglected zoonosis, affecting human and animal populations worldwide. Reliable effective therapeutics and concerns to look for more research into the molecular analysis of its genome is therefore needed. In the genomic pool of the Leptospira interrogans many hypothetical proteins are still uncharacterized. In the current research, we performed extensive in silico analysis to prioritize the potential hypothetical proteins of L. interrogans serovar Copenhageni via stepwise reducing the available hypothetical proteins (Total 3606) of the assembly to only 15, based on non-homologous to homosapien, essential, functional, virulent, cellular localization. Out of them, only two proteins WP_000898918.1 (Hypothetical Protein 1) & WP_001014594.1 (Hypothetical Protein 2) were found druggable and involved in protein-protein interaction network. The 3 D structures of these two target proteins were predicted via ab initio homology modeling followed by structures refinement and validation, as no structures were available till date. The analysis also revealed that the functional domains, families and protein-protein interacting partners identified in both proteins are crucial for the survival of the bacteria. The binding cavities were predicted for both the proteins through blind and specific protein-ligand docking with their respective ligands and inhibitors and were found to be in accordance with the druggable sites predicted by DoGSiteScorer. The docking interactions were found within the active functional domains for both the proteins while for Hypothetical Protein 2, the same residues were involved in interactions with Cytidine-5'-triphosphate in blind and specific docking. Furthermore, the simulations of molecular dynamics and free binding energy revealed the stable substrate binding and efficient binding energies, and were in accordance to our docking results. The work predicted two unique hypothetical proteins of L. interrogans as a potential druggable targets for designing of inhibitors for them.Communicated by Ramaswamy H. Sarma.
    Matched MeSH terms: Bacterial Proteins/genetics; Bacterial Proteins/metabolism
  7. Yaacob MA, Hasan WA, Ali MS, Rahman RN, Salleh AB, Basri M, et al.
    Acta Biochim. Pol., 2014;61(4):745-52.
    PMID: 25337608
    Genome mining revealed a 1011 nucleotide-long fragment encoding a type I L-asparaginase (J15 asparaginase) from the halo-tolerant Photobacterium sp. strain J15. The gene was overexpressed in pET-32b (+) vector in E. coli strain Rosetta-gami B (DE3) pLysS and purified using two-step chromatographic methods: Ni(2+)-Sepharose affinity chromatography and Q-Sepharose anion exchange chromatography. The final specific activity and yield of the enzyme achieved from these steps were 20 U/mg and 49.2%, respectively. The functional dimeric form of J15-asparaginase was characterised with a molecular weight of ~70 kDa. The optimum temperature and pH were 25°C and pH 7.0, respectively. This protein was stable in the presence of 1 mM Ni(2+) and Mg(2+), but it was inhibited by Mn(2+), Fe(3+) and Zn(2+) at the same concentration. J15 asparaginase actively hydrolysed its native substrate, l-asparagine, but had low activity towards l-glutamine. The melting temperature of J15 asparaginase was ~51°C, which was determined using denatured protein analysis of CD spectra. The Km, Kcat, Kcat/Km of J15 asparaginase were 0.76 mM, 3.2 s(-1), and 4.21 s(-1) mM(-1), respectively. Conformational changes of the J15 asparaginase 3D structure at different temperatures (25°C, 45°C, and 65°C) were analysed using Molecular Dynamic simulations. From the analysis, residues Tyr₂₄ , His₂₂, Gly₂₃, Val₂₅ and Pro₂₆ may be directly involved in the 'open' and 'closed' lid-loop conformation, facilitating the conversion of substrates during enzymatic reactions. The properties of J15 asparaginase, which can work at physiological pH and has low glutaminase activity, suggest that this could be a good candidate for reducing toxic effects during cancer treatment.
    Matched MeSH terms: Bacterial Proteins/genetics; Bacterial Proteins/metabolism*; Bacterial Proteins/chemistry*
  8. Hamdan SH, Maiangwa J, Ali MSM, Normi YM, Sabri S, Leow TC
    Appl Microbiol Biotechnol, 2021 Oct;105(19):7069-7094.
    PMID: 34487207 DOI: 10.1007/s00253-021-11520-7
    Thermal stability is one of the most desirable characteristics in the search for novel lipases. The search for thermophilic microorganisms for synthesising functional enzyme biocatalysts with the ability to withstand high temperature, and capacity to maintain their native state in extreme conditions opens up new opportunities for their biotechnological applications. Thermophilic organisms are one of the most favoured organisms, whose distinctive characteristics are extremely related to their cellular constituent particularly biologically active proteins. Modifications on the enzyme structure are critical in optimizing the stability of enzyme to thermophilic conditions. Thermostable lipases are one of the most favourable enzymes used in food industries, pharmaceutical field, and actively been studied as potential biocatalyst in biodiesel production and other biotechnology application. Particularly, there is a trade-off between the use of enzymes in high concentration of organic solvents and product generation. Enhancement of the enzyme stability needs to be achieved for them to maintain their enzymatic activity regardless the environment. Various approaches on protein modification applied since decades ago conveyed a better understanding on how to improve the enzymatic properties in thermophilic bacteria. In fact, preliminary approach using advanced computational analysis is practically conducted before any modification is being performed experimentally. Apart from that, isolation of novel extremozymes from various microorganisms are offering great frontier in explaining the crucial native interaction within the molecules which could help in protein engineering. In this review, the thermostability prospect of lipases and the utility of protein engineering insights into achieving functional industrial usefulness at their high temperature habitat are highlighted. Similarly, the underlying thermodynamic and structural basis that defines the forces that stabilize these thermostable lipase is discussed. KEY POINTS: • The dynamics of lipases contributes to their non-covalent interactions and structural stability. • Thermostability can be enhanced by well-established genetic tools for improved kinetic efficiency. • Molecular dynamics greatly provides structure-function insights on thermodynamics of lipase.
    Matched MeSH terms: Bacterial Proteins
  9. de Almeida Santos G, Englund ANB, Dalleywater EL, Røhr ÅK
    FEBS Open Bio, 2024 Dec;14(12):2038-2058.
    PMID: 39382070 DOI: 10.1002/2211-5463.13906
    Tyrosinases (TYRs) are type-3 copper proteins that are widely distributed in nature. They can hydroxylate and oxidize phenolic molecules and are mostly known for producing melanins that confer protection against photo induced damage. TYRs are also thought to play an important role in the 'latch mechanism', where high concentrations of phenolic compounds inhibit oxidative decomposition of organic biomass and subsequent CO2 release, especially relevant in wetland environments. In the present study, we describe two TYRs, HcTyr1 and HcTyr2, from halophilic bacterium Hahella sp. CCB MM4 previously isolated at Matang mangrove forest in Perak, Malaysia. The structure of HcTyr1 was determined by X-ray crystallography at a resolution of 1.9 Å and represents an uncharacterized group of prokaryotic TYRs as demonstrated by a sequence similarity network analysis. The genes encoding the enzymes were cloned, expressed, purified and thoroughly characterized by biochemical methods. HcTyr1 was able to self-cleave its lid-domain (LID) in a protease independent manner, whereas the LID of HcTyr2 was essential for activity and stability. Both enzymes showed variable activity in the presence of different metals, surfactants and NaCl, and were able to oxidize lignin constituents. The high salinity tolerance of HcTyr1 indicates that the enzyme can be an efficient catalyst in the habitat of the host.
    Matched MeSH terms: Bacterial Proteins/genetics; Bacterial Proteins/metabolism; Bacterial Proteins/chemistry
  10. Ishak MI, Jenkins J, Kulkarni S, Keller TF, Briscoe WH, Nobbs AH, et al.
    J Colloid Interface Sci, 2021 Dec 15;604:91-103.
    PMID: 34265695 DOI: 10.1016/j.jcis.2021.06.173
    Nanopillared surfaces have emerged as a promising strategy to combat bacterial infections on medical devices. However, the mechanisms that underpin nanopillar-induced rupture of the bacterial cell membrane remain speculative. In this study, we have tested three medically relevant poly(ethylene terephthalate) (PET) nanopillared-surfaces with well-defined nanotopographies against both Gram-negative and Gram-positive bacteria. Focused ion beam scanning electron microscopy (FIB-SEM) and contact mechanics analysis were utilised to understand the nanobiophysical response of the bacterial cell envelope to a single nanopillar. Given their importance to bacterial adhesion, the contribution of bacterial surface proteins to nanotopography-mediated cell envelope damage was also investigated. We found that, whilst cell envelope deformation was affected by the nanopillar tip diameter, the nanopillar density affected bacterial metabolic activities. Moreover, three different types of bacterial cell envelope deformation were observed upon contact of bacteria with the nanopillared surfaces. These were attributed to bacterial responses to cell wall stresses resulting from the high intrinsic pressure caused by the engagement of nanopillars by bacterial surface proteins. Such influences of bacterial surface proteins on the antibacterial action of nanopillars have not been previously reported. Our findings will be valuable to the improved design and fabrication of effective antibacterial surfaces.
    Matched MeSH terms: Bacterial Proteins*
  11. Yap TW, Rabu A, Abu Bakar FD, Rahim RA, Mahadi NM, Illias RM, et al.
    ScientificWorldJournal, 2014;2014:642891.
    PMID: 24982972 DOI: 10.1155/2014/642891
    Lactococcus lactis is the most studied mesophilic fermentative lactic acid bacterium. It is used extensively in the food industry and plays a pivotal role as a cell factory and also as vaccine delivery platforms. The proteome of the Malaysian isolated L. lactis M4 dairy strain, obtained from the milk of locally bred cows, was studied to elucidate the physiological changes occurring between the growth phases of this bacterium. In this study, ultraperformance liquid chromatography nanoflow electrospray ionization tandem mass spectrometry (UPLC- nano-ESI-MS(E)) approach was used for qualitative proteomic analysis. A total of 100 and 121 proteins were identified from the midexponential and early stationary growth phases, respectively, of the L. lactis strain M4. During the exponential phase, the most important reaction was the generation of sufficient energy, whereas, in the early stationary phase, the metabolic energy pathways decreased and the biosynthesis of proteins became more important. Thus, the metabolism of the cells shifted from energy production in the exponential phase to the synthesis of macromolecules in the stationary phase. The resultant proteomes are essential in providing an improved view of the cellular machinery of L. lactis during the transition of growth phases and hence provide insight into various biotechnological applications.
    Matched MeSH terms: Bacterial Proteins/classification; Bacterial Proteins/metabolism
  12. Anbu P, Gopinath SCB, Chaulagain BP, Lakshmipriya T
    Biomed Res Int, 2017 03 28;2017:2195808.
    PMID: 28459056 DOI: 10.1155/2017/2195808
    Matched MeSH terms: Bacterial Proteins/therapeutic use*; Bacterial Proteins/chemistry*
  13. Jabeen S, Yap HY, Abdullah FFJ, Zakaria Z, Isa NM, Tan YC, et al.
    Genes (Basel), 2019 01 25;10(2).
    PMID: 30691021 DOI: 10.3390/genes10020081
    Although more than 100 genome sequences of Pasteurella multocida are available, comprehensive and complete genome sequence analysis is limited. This study describes the analysis of complete genome sequence and pathogenomics of P. multocida strain PMTB2.1. The genome of PMTB2.1 has 2176 genes with more than 40 coding sequences associated with iron regulation and 140 virulence genes including the complete tad locus. The tad locus includes several previously uncharacterized genes such as flp2, rcpC and tadV genes. A transposable phage resembling to Mu phages was identified in P. multocida that has not been identified in any other serotype yet. The multi-locus sequence typing analysis assigned the PMTB2.1 genome sequence as type ST101, while the comparative genome analysis showed that PMTB2.1 is closely related to other P. multocida strains with the genomic distance of less than 0.13. The expression profiling of iron regulating-genes of PMTB2.1 was characterized under iron-limited environment. Results showed significant changes in the expression profiles of iron-regulating genes (p < 0.05) whereas the highest expression of fecE gene (281 fold) at 30 min suggests utilization of the outer-membrane proteins system in iron acquisition at an early stage of growth. This study showed the phylogenomic relatedness of P. multocida and improved annotation of important genes and functional characterization of iron-regulating genes of importance to the bacterial growth.
    Matched MeSH terms: Bacterial Proteins/genetics; Bacterial Proteins/metabolism
  14. Ishak SNH, Aris SNAM, Halim KBA, Ali MSM, Leow TC, Kamarudin NHA, et al.
    Molecules, 2017 Sep 25;22(10).
    PMID: 28946656 DOI: 10.3390/molecules22101574
    Less sedimentation and convection in a microgravity environment has become a well-suited condition for growing high quality protein crystals. Thermostable T1 lipase derived from bacterium Geobacilluszalihae has been crystallized using the counter diffusion method under space and earth conditions. Preliminary study using YASARA molecular modeling structure program for both structures showed differences in number of hydrogen bond, ionic interaction, and conformation. The space-grown crystal structure contains more hydrogen bonds as compared with the earth-grown crystal structure. A molecular dynamics simulation study was used to provide insight on the fluctuations and conformational changes of both T1 lipase structures. The analysis of root mean square deviation (RMSD), radius of gyration, and root mean square fluctuation (RMSF) showed that space-grown structure is more stable than the earth-grown structure. Space-structure also showed more hydrogen bonds and ion interactions compared to the earth-grown structure. Further analysis also revealed that the space-grown structure has long-lived interactions, hence it is considered as the more stable structure. This study provides the conformational dynamics of T1 lipase crystal structure grown in space and earth condition.
    Matched MeSH terms: Bacterial Proteins/metabolism; Bacterial Proteins/chemistry
  15. Latip W, Raja Abd Rahman RNZ, Leow ATC, Mohd Shariff F, Kamarudin NHA, Mohamad Ali MS
    Int J Mol Sci, 2018 Feb 13;19(2).
    PMID: 29438291 DOI: 10.3390/ijms19020560
    Lipase plays an important role in industrial and biotechnological applications. Lipases have been subject to modification at the N and C terminals, allowing better understanding of lipase stability and the discovery of novel properties. A thermotolerant lipase has been isolated from Antarctic Pseudomonas sp. The purified Antarctic AMS3 lipase (native) was found to be stable across a broad range of temperatures and pH levels. The lipase has a partial Glutathione-S-transferase type C (GST-C) domain at the N-terminal not found in other lipases. To understand the influence of N-terminal GST-C domain on the biochemical and structural features of the native lipase, the deletion of the GST-C domain was carried out. The truncated protein was successfully expressed in E. coli BL21(DE3). The molecular weight of truncated AMS3 lipase was approximately ~45 kDa. The number of truncated AMS3 lipase purification folds was higher than native lipase. Various mono and divalent metal ions increased the activity of the AMS3 lipase. The truncated AMS3 lipase demonstrated a similarly broad temperature range, with the pH profile exhibiting higher activity under alkaline conditions. The purified lipase showed a substrate preference for a long carbon chain substrate. In addition, the enzyme activity in organic solvents was enhanced, especially for toluene, Dimethylsulfoxide (DMSO), chloroform and xylene. Molecular simulation revealed that the truncated lipase had increased structural compactness and rigidity as compared to native lipase. Removal of the N terminal GST-C generally improved the lipase biochemical characteristics. This enzyme may be utilized for industrial purposes.
    Matched MeSH terms: Bacterial Proteins/metabolism; Bacterial Proteins/chemistry*
  16. Lau TV, Puah SM, Tan JMA, Merino S, Puthucheary SD, Chua KH
    Microb Pathog, 2023 Apr;177:106059.
    PMID: 36878334 DOI: 10.1016/j.micpath.2023.106059
    Aeromonas dhakensis possesses dual flagellar systems for motility under different environments. Flagella-mediated motility is necessary for biofilm formation through an initial attachment of bacteria to the surface, but this has not been elucidated in A. dhakensis. This study investigates the role of polar (flaH, maf1) and lateral (lafB, lafK and lafS) flagellar genes in the biofilm formation of a clinical A. dhakensis strain WT187 isolated from burn wound infection. Five deletion mutants and corresponding complemented strains were constructed using pDM4 and pBAD33 vectors, respectively, and analyzed for motility and biofilm formation using crystal violet staining and real-time impedance-based assays. All mutants were significantly reduced in swimming (p 
    Matched MeSH terms: Bacterial Proteins/genetics; Bacterial Proteins/metabolism
  17. Johan UUM, Rahman RNZRA, Kamarudin NHA, Ali MSM
    Arch Biochem Biophys, 2024 Jun;756:109996.
    PMID: 38621445 DOI: 10.1016/j.abb.2024.109996
    Hyperthermostable enzymes are highly desirable biocatalysts due to their exceptional stability at extreme temperatures. Recently, a hyperthermostable carboxylesterase EstD9 from Anoxybacillus geothermalis D9 was biochemically characterized. The enzyme exhibited remarkable stability at high temperature. In this study, we attempted to probe the conformational adaptability of EstD9 under extreme conditions via in silico approaches. Circular dichroism revealed that EstD9 generated new β-sheets at 80 °C, making the core of the hydrolase fold more stable. Interestingly, the profiles of molecular dynamics simulation showed the lowest scores of radius of gyration and solvent accessible surface area (SASA) at 80 °C. Three loops were responsible for protecting the catalytic site, which resided at the interface between the large and cap domains. To further investigate the structural adaptation in extreme conditions, the intramolecular interactions of the native structure were investigated. EstD9 revealed 18 hydrogen bond networks, 7 salt bridges, and 9 hydrophobic clusters, which is higher than the previously reported thermostable Est30. Collectively, the analysis indicates that intramolecular interactions and structural dynamics play distinct roles in preserving the overall EstD9 structure at elevated temperatures. This work is relevant to both fundamental and applied research involving protein engineering of industrial thermostable enzymes.
    Matched MeSH terms: Bacterial Proteins/metabolism; Bacterial Proteins/chemistry
  18. Sahayarayan JJ, Thiyagarajan R, Prathiviraj R, Tn K, Rajan KS, Manivannan P, et al.
    Microb Pathog, 2024 Dec;197:107028.
    PMID: 39426637 DOI: 10.1016/j.micpath.2024.107028
    The 21st century has witnessed several clinical outcomes regarding AMR. One health concept has been foreseen as a standard global public health initiative in ensuring human, animal and environmental health. The present study explores critical Gram-negative ESKAPE pathogens encompassing Acinetobacter baumannii (ACB), Klebsiella pneumoniae (KPX) and Pseudomonas aeruginosa (PAE). A comparative genomic analysis approach was utilized for identifying novel and putative genes coercing global health consequences stressing the significance of the above iatrogenic and nosocomial pathogens. O findings reveal that Pseudomonas aeruginosaPAO1 (PAE) possesses the largest genome, measuring 62,64,404 base pairs, containing 14,342 protein-coding genes and an elevated count of ORFs, surpassing other organisms. Notably, P. aeruginosa PAO1 exhibits a comprehensive metabolic landscape with 355 pathways and 1659 metabolic reactions, encompassing 200 biosynthesis and 132 degradation pathways. Transferases are the predominant enzyme category across all three genomes, followed by oxidoreductases and hydrolases. The pivotal role of beta-lactamase in conferring resistance against antibiotics is also evident in all three microbes. This investigation underscores the PAE genome harbours genes and enzymes associated with heightened virulence in antibiotic resistance. The holistic review combined with comparative genomics underlines the significance of delving into the genomes of these antimicrobial-resistant organisms. In silico methodologies are increasingly stressed in aiding the successful accomplishment of the United Nations Sustainable Development Goal -3: Good Health and Well-being. The prominent findings establish Carbapenem resistance and evolutionary lineages of the MCR-1 gene conferring AMR landscapes for future research.
    Matched MeSH terms: Bacterial Proteins/genetics; Bacterial Proteins/metabolism
  19. Shukor MY, Halmi MI, Rahman MF, Shamaan NA, Syed MA
    Biomed Res Int, 2014;2014:853084.
    PMID: 24724104 DOI: 10.1155/2014/853084
    The first purification of the Mo-reducing enzyme from Serratia sp. strain DRY5 that is responsible for molybdenum reduction to molybdenum blue in the bacterium is reported. The monomeric enzyme has an apparent molecular weight of 105 kDalton. The isoelectric point of this enzyme was 7.55. The enzyme has an optimum pH of 6.0 and maximum activity between 25 and 35°C. The Mo-reducing enzyme was extremely sensitive to temperatures above 50°C (between 54 and 70°C). A plot of initial rates against substrate concentrations at 15 mM 12-MP registered a V max for NADH at 12.0 nmole Mo blue/min/mg protein. The apparent K m for NADH was 0.79 mM. At 5 mM NADH, the apparent V max and apparent K m values for 12-MP of 12.05 nmole/min/mg protein and 3.87 mM, respectively, were obtained. The catalytic efficiency (k cat/K m ) of the Mo-reducing enzyme was 5.47 M(-1) s(-1). The purification of this enzyme could probably help to solve the phenomenon of molybdenum reduction to molybdenum blue first reported in 1896 and would be useful for the understanding of the underlying mechanism in molybdenum bioremediation involving bioreduction.
    Matched MeSH terms: Bacterial Proteins/metabolism*
  20. Gopinath SC, Anbu P, Lakshmipriya T, Tang TH, Chen Y, Hashim U, et al.
    Biomed Res Int, 2015;2015:140726.
    PMID: 26180780 DOI: 10.1155/2015/140726
    Keratinases are proteolytic enzymes predominantly active when keratin substrates are available that attack disulfide bridges in the keratin to convert them from complex to simplified forms. Keratinases are essential in preparation of animal nutrients, protein supplements, leather manufacture, textile processing, detergent formulation, feather meal processing for feed and fertilizer, the pharmaceutical and biomedical industries, and waste management. Accordingly, it is necessary to develop a method for continuous production of keratinase from reliable sources that can be easily managed. Microbial keratinase is less expensive than conventionally produced keratinase and can be obtained from fungi, bacteria, and actinomycetes. In this overview, the expansion of information about microbial keratinases and important considerations in keratinase production are discussed.
    Matched MeSH terms: Bacterial Proteins/chemistry*
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links