Displaying publications 1 - 20 of 247 in total

Abstract:
Sort:
  1. Yaacob MA, Hasan WA, Ali MS, Rahman RN, Salleh AB, Basri M, et al.
    Acta Biochim. Pol., 2014;61(4):745-52.
    PMID: 25337608
    Genome mining revealed a 1011 nucleotide-long fragment encoding a type I L-asparaginase (J15 asparaginase) from the halo-tolerant Photobacterium sp. strain J15. The gene was overexpressed in pET-32b (+) vector in E. coli strain Rosetta-gami B (DE3) pLysS and purified using two-step chromatographic methods: Ni(2+)-Sepharose affinity chromatography and Q-Sepharose anion exchange chromatography. The final specific activity and yield of the enzyme achieved from these steps were 20 U/mg and 49.2%, respectively. The functional dimeric form of J15-asparaginase was characterised with a molecular weight of ~70 kDa. The optimum temperature and pH were 25°C and pH 7.0, respectively. This protein was stable in the presence of 1 mM Ni(2+) and Mg(2+), but it was inhibited by Mn(2+), Fe(3+) and Zn(2+) at the same concentration. J15 asparaginase actively hydrolysed its native substrate, l-asparagine, but had low activity towards l-glutamine. The melting temperature of J15 asparaginase was ~51°C, which was determined using denatured protein analysis of CD spectra. The Km, Kcat, Kcat/Km of J15 asparaginase were 0.76 mM, 3.2 s(-1), and 4.21 s(-1) mM(-1), respectively. Conformational changes of the J15 asparaginase 3D structure at different temperatures (25°C, 45°C, and 65°C) were analysed using Molecular Dynamic simulations. From the analysis, residues Tyr₂₄ , His₂₂, Gly₂₃, Val₂₅ and Pro₂₆ may be directly involved in the 'open' and 'closed' lid-loop conformation, facilitating the conversion of substrates during enzymatic reactions. The properties of J15 asparaginase, which can work at physiological pH and has low glutaminase activity, suggest that this could be a good candidate for reducing toxic effects during cancer treatment.
    Matched MeSH terms: Bacterial Proteins/genetics
  2. Nanthini J, Ong SY, Sudesh K
    Gene, 2017 Sep 10;628:146-155.
    PMID: 28711667 DOI: 10.1016/j.gene.2017.07.039
    Rubber materials have greatly contributed to human civilization. However, being a polymeric material does not decompose easily, it has caused huge environmental problems. On the other hand, only few bacteria are known to degrade rubber, with studies pertaining them being intensively focusing on the mechanism involved in microbial rubber degradation. The Streptomyces sp. strain CFMR 7, which was previously confirmed to possess rubber-degrading ability, was subjected to whole genome sequencing using the single molecule sequencing technology of the PacBio® RS II system. The genome was further analyzed and compared with previously reported rubber-degrading bacteria in order to identify the potential genes involved in rubber degradation. This led to the interesting discovery of three homologues of latex-clearing protein (Lcp) on the chromosome of this strain, which are probably responsible for rubber degrading activities. Genes encoding oxidoreductase α-subunit (oxiA) and oxidoreductase β-subunit (oxiB) were also found downstream of two lcp genes which are located adjacent to each other. In silico analysis reveals genes that have been identified to be involved in the microbial degradation of rubber in the Streptomyces sp. strain CFMR 7. This is the first whole genome sequence of a clear-zone-forming natural rubber- degrading Streptomyces sp., which harbours three Lcp homologous genes with the presence of oxiA and oxiB genes compared to the previously reported Gordonia polyisoprenivorans strain VH2 (with two Lcp homologous genes) and Nocardia nova SH22a (with only one Lcp gene).
    Matched MeSH terms: Bacterial Proteins/genetics*
  3. Jabeen S, Yap HY, Abdullah FFJ, Zakaria Z, Isa NM, Tan YC, et al.
    Genes (Basel), 2019 01 25;10(2).
    PMID: 30691021 DOI: 10.3390/genes10020081
    Although more than 100 genome sequences of Pasteurella multocida are available, comprehensive and complete genome sequence analysis is limited. This study describes the analysis of complete genome sequence and pathogenomics of P. multocida strain PMTB2.1. The genome of PMTB2.1 has 2176 genes with more than 40 coding sequences associated with iron regulation and 140 virulence genes including the complete tad locus. The tad locus includes several previously uncharacterized genes such as flp2, rcpC and tadV genes. A transposable phage resembling to Mu phages was identified in P. multocida that has not been identified in any other serotype yet. The multi-locus sequence typing analysis assigned the PMTB2.1 genome sequence as type ST101, while the comparative genome analysis showed that PMTB2.1 is closely related to other P. multocida strains with the genomic distance of less than 0.13. The expression profiling of iron regulating-genes of PMTB2.1 was characterized under iron-limited environment. Results showed significant changes in the expression profiles of iron-regulating genes (p < 0.05) whereas the highest expression of fecE gene (281 fold) at 30 min suggests utilization of the outer-membrane proteins system in iron acquisition at an early stage of growth. This study showed the phylogenomic relatedness of P. multocida and improved annotation of important genes and functional characterization of iron-regulating genes of importance to the bacterial growth.
    Matched MeSH terms: Bacterial Proteins/genetics
  4. Hanafiah A, Razak SA, Neoh HM, Zin NM, Lopes BS
    Braz J Infect Dis, 2020 11 04;24(6):545-551.
    PMID: 33157035 DOI: 10.1016/j.bjid.2020.10.005
    BACKGROUND: Helicobacter pylori harbouring cag-pathogenicity island (cagPAI) which encodes type IV secretion system (T4SS) and cagA virulence gene are involved in inflammation of the gastric mucosa. We examined all the 27 cagPAI genes in 88 H. pylori isolates from patients of different ethnicities and examined the association of the intactness of cagPAI region with histopathological scores of the gastric mucosa.

    RESULTS: 96.6% (n=85) of H. pylori isolates were cagPAI-positive with 22.4% (19/85) having an intact cagPAI, whereas 77.6% (66/85) had a partial/rearranged cagPAI. The frequency of cag2 and cag14 were found to be significantly higher in H. pylori isolated from Malays, whereas cag4 was predominantly found in Chinese isolates. The cag24 was significantly found in higher proportions in Malay and Indian isolates than in Chinese isolates. The intactness of cagPAI region showed an association with histopathological scores of the gastric mucosa. Significant association was observed between H. pylori harbouring partial cagPAI with higher density of bacteria and neutrophil activity, whereas strains lacking cagPAI were associated with higher inflammatory score.

    CONCLUSIONS: The genotypes of H. pylori strains with various cagPAI rearrangement associated with patients' ethnicities and histopathological scores might contribute to the pathogenesis of H. pylori infection in a multi-ethnic population.

    Matched MeSH terms: Bacterial Proteins/genetics
  5. BangaSingh KK, Nisha M, Lau HY, Ravichandran M, Salleh MZ
    Microb Pathog, 2016 Feb;91:123-8.
    PMID: 26706344 DOI: 10.1016/j.micpath.2015.12.004
    Virulence of Shigella is attributed to the genes presence in chromosome or in the megaplasmid. The apy gene which is located in the megaplasmid of Shigella species encodes for apyrase enzyme, a pathogenesis-associated enzyme causing mitochondrial damage and host cell death. In this study we constructed an apy mutant of Shigella flexneri by insertional activation using a kanamycin resistant gene cassette. The wild type apy gene of S. flexneri 2a was PCR amplified, cloned and mutated with insertion of kanamycin resistant gene cassette (aphA). The mutated construct (apy: aphA) was subcloned into a conjugative suicidal vector (pWM91) at the unique Sma1 and Sac1 sites. The mutation of the wild apy gene in the construct was confirmed by DNA sequencing. The mutated construct was introduced into wild type S. flexneri 2a by conjugation with Escherichia coli. After undergoing homologous recombination, the wild apy gene was deleted from the construct using the sucrose selection method. Non-functional activity of the apyrase enzyme in the constructed strain by colorimetric test indicated the successful mutation of the apyrase enzyme. This strain with mutated apy gene was evaluated for its protective efficacy using the guinea pig keratoconjunctivitis model. The strain was Sereny negative and it elicited a significant protection following challenge with wild S. flexneri strain. This apy mutant strain will form a base for the development of a vaccine target for shigellosis.
    Matched MeSH terms: Bacterial Proteins/genetics
  6. Sow SL, Khoo G, Chong LK, Smith TJ, Harrison PL, Ong HK
    World J Microbiol Biotechnol, 2014 Oct;30(10):2645-53.
    PMID: 24929362 DOI: 10.1007/s11274-014-1687-z
    In a previous study, notable differences of several physicochemical properties, as well as the community structure of ammonia oxidizing bacteria as judged by 16S rRNA gene analysis, were observed among several disused tin-mining ponds located in the town of Kampar, Malaysia. These variations were associated with the presence of aquatic vegetation as well as past secondary activities that occurred at the ponds. Here, methane oxidizing bacteria (MOB), which are direct participants in the nutrient cycles of aquatic environments and biological indicators of environmental variations, have been characterised via analysis of pmoA functional genes in the same environments. The MOB communities associated with disused tin-mining ponds that were exposed to varying secondary activities were examined in comparison to those in ponds that were left to nature. Comparing the sequence and phylogenetic analysis of the pmoA clone libraries at the different ponds (idle, lotus-cultivated and post-aquaculture), we found pmoA genes indicating the presence of type I and type II MOB at all study sites, but type Ib sequences affiliated with the Methylococcus/Methylocaldum lineage were most ubiquitous (46.7 % of clones). Based on rarefaction analysis and diversity indices, the disused mining pond with lotus culture was observed to harbor the highest richness of MOB. However, varying secondary activity or sample type did not show a strong variation in community patterns as compared to the ammonia oxidizers in our previous study.
    Matched MeSH terms: Bacterial Proteins/genetics
  7. Alfizah H, Noraziah MZ, Chao MY, Rahman MM, Ramelah M
    Clin Ter, 2013;164(4):301-5.
    PMID: 24045512 DOI: 10.7417/CT.2013.1577
    Helicobacter pylori strains secrete a vacuolating cytotoxin (VacA), plays an important role for the development of peptic ulcer disease and gastro-duodenal diseases. vacA gene is responsible to regulate the activity of the vacuolating cytotoxin. The objective of this study was molecular detection of vacA gene and observes the vacuolating activity on human gastric adenocarcinoma (AGS) cells.
    Matched MeSH terms: Bacterial Proteins/genetics*
  8. Ang KC, Ibrahim P, Gam LH
    Biotechnol Appl Biochem, 2014 Mar-Apr;61(2):153-64.
    PMID: 23826872 DOI: 10.1002/bab.1137
    Mycobacterium tuberculosis is a causative agent of tuberculosis (TB). The ability of M. tuberculosis to be quiescent in the cell has caused the emergence of latent infection. A comprehensive proteomic analysis of M. tuberculosis H37Rv over three growth phases, namely mid-log (14-day culture), early stationary (28-day culture), and late stationary (50-day culture), was performed in order to study the change in proteome from the mid-log phase to late-stationary phase. Combination methods of two-dimensional electrophoresis (2-DE) and tandem mass spectrometry were used to generate proteome maps of M. tuberculosis at different growth phases. Ten proteins were detected differentially expressed in the late-stationary phase compared with the other two phases. These proteins were SucD, TrpD, and Rv2161c, which belong to metabolic pathway proteins; FadE5, AccD5, DesA1, and Rv1139c are proteins involved in cell wall or lipid biosynthesis, whereas TB21.7 and Rv3224 are conserved hypothetical proteins with unknown function. A surface antigen protein, DesA1, was not detectable in the late-stationary phase, although present in both log and early-stationary phases. The changes in the expression levels of these proteins were in line with the growth environment changes of the bacteria from mid-log phase to late-stationary phase. The information gathered may be valuable in the intervention against latent TB infection.
    Matched MeSH terms: Bacterial Proteins/genetics
  9. Gan HM, Shahir S, Yahya A
    Microbiology (Reading, Engl.), 2012 Aug;158(Pt 8):1933-1941.
    PMID: 22609751 DOI: 10.1099/mic.0.059550-0
    The gene coding for the oxygenase component, sadA, of 4-aminobenzenesulfonate (4-ABS) 3,4-dioxygenase in Hydrogenophaga sp. PBC was previously identified via transposon mutagenesis. Expression of wild-type sadA in trans restored the ability of the sadA mutant to grow on 4-ABS. The inclusion of sadB and sadD, coding for a putative glutamine-synthetase-like protein and a plant-type ferredoxin, respectively, further improved the efficiency of 4-ABS degradation. Transcription analysis using the gfp promoter probe plasmid showed that sadABD was expressed during growth on 4-ABS and 4-sulfocatechol. Heterologous expression of sadABD in Escherichia coli led to the biotransformation of 4-ABS to a metabolite which shared a similar retention time and UV/vis profile with 4-sulfocatechol. The putative reductase gene sadC was isolated via degenerate PCR and expression of sadC and sadABD in E. coli led to maximal 4-ABS biotransformation. In E. coli, the deletion of sadB completely eliminated dioxygenase activity while the deletion of sadC or sadD led to a decrease in dioxygenase activity. Phylogenetic analysis of SadB showed that it is closely related to the glutamine-synthetase-like proteins involved in the aniline degradation pathway. This is the first discovery, to our knowledge, of the functional genetic components for 4-ABS aromatic ring hydroxylation in the bacterial domain.
    Matched MeSH terms: Bacterial Proteins/genetics*
  10. Wong CS, Yin WF, Sam CK, Koh CL, Chan KG
    New Microbiol., 2012 Jan;35(1):43-51.
    PMID: 22378552
    Most Proteobacteria produce N-acylhomoserine lactones for bacterial cell-to-cell communication, a process called quorum sensing. Interference of quorum sensing, commonly known as quorum quenching, represents an important way to control quorum sensing. This work reports the isolation of quorum quenching bacterium strain 2WS8 from Malaysia tropical wetland water (2°11'8"N, 102°15'2"E, in 2007) by using a modified version of a previously reported KG medium. Strain 2WS8 was isolated based on its ability to utilize N-(3-oxohexanoyl)-L-homoserine lactone (3-oxo-C6-HSL) as the sole source of energy. This bacterium clustered closely to Pseudomonas aeruginosa PAO1. Strain 2SW8 possesses both quiP and pvdQ homologue acylase genes. Rapid Resolution Liquid Chromatography analysis confirmed that strain 2SW8 preferentially degraded N-acylhomoserine lactones with 3-oxo group substitution but not those with unsubstituted groups at C3 position in the acyl side chain. Strain 2SW8 also showed 2-heptyl-3-hydroxy-4-quinolone production.
    Matched MeSH terms: Bacterial Proteins/genetics
  11. Karunakaran R, Tay ST, Rahim FF, Lim BB, Sam IC, Kahar-Bador M, et al.
    Jpn. J. Infect. Dis., 2012;65(5):433-5.
    PMID: 22996219
    The prevalence of ceftriaxone resistance and the associated genes encoding extended-spectrum β-lactamase (ESBL) was determined in 149 non-duplicate non-typhoidal Salmonella isolated in 2008-2009 from patients in a tertiary care hospital in Kuala Lumpur, Malaysia. The resistance rate to ceftriaxone was 2.7% (2/74) in 2008, 4.0% (3/75) in 2009, and 3.4% (5/149) overall. CTX-M ESBL genes were detected in 2 of the 5 ceftriaxone-resistant isolates. The prevalence of ceftriaxone resistance, although low, is a concern because it limits therapeutic options. Continued surveillance of ceftriaxone resistance is important to monitor its trends.
    Matched MeSH terms: Bacterial Proteins/genetics*
  12. Teh CS, Chua KH, Thong KL
    Infect Genet Evol, 2011 Jul;11(5):1121-8.
    PMID: 21511055 DOI: 10.1016/j.meegid.2011.04.005
    This paper describes the development and application of multilocus sequencing typing (MLST) and multi-virulence locus sequencing typing (MVLST) methods in determining the genetic variation and relatedness of 43 Vibrio cholerae strains of different serogroups isolated from various sources in Malaysia. The MLST assay used six housekeeping genes (dnaE, lap, recA, gyrB, cat and gmd), while the MVLST assay incorporated three virulence genes (ctxAB, tcpA and tcpI) and three virulence-associated genes (hlyA, toxR and rtxA). Our data showed that the dnaE and rtxA genes were the most conserved genes in V. cholerae O1 strains. Among the 12 studied genes, transitional substitutions that led to silent mutations were observed in all, except for gmd and hlyA, while non-synonymous substitutions occurred more frequently in virulence and virulence-associated genes. Five V. cholerae O1 strains were found to be the El Tor variant O1 strains because they harboured the classical ctxB gene. In addition, the classical ctxB gene was also observed in O139 V. cholerae. A total of 29 MLST types were observed, and this assay could differentiate V. cholerae within the non-O1/non-O139 serogroups. A total of 27 MVLST types were obtained. MVLST appeared to be more discriminatory than MLST because it could differentiate V. cholerae strains from two different outbreaks and could separate the toxigenic from the non-toxigenic subtypes. Although the O1 V. cholerae strains were closely related, the combined MLST and MVLST analyses differentiated the strains isolated from different localities. In conclusion, sequence-based analysis in this study provided a better understanding of mutation points and the type of mutations in V. cholerae. The MVLST assay is useful to characterise O1 V. cholerae strains, while combined analysis may improve the discriminatory power and is suitable for the local epidemiological study of V. cholerae.
    Matched MeSH terms: Bacterial Proteins/genetics
  13. Rahman RN, Kamarudin NH, Yunus J, Salleh AB, Basri M
    Int J Mol Sci, 2010;11(9):3195-208.
    PMID: 20957088 DOI: 10.3390/ijms11093195
    An organic solvent tolerant lipase gene from Staphylococcus epidermidis AT2 was successfully cloned and expressed with pTrcHis2 in E. coli TOP10. Sequence analysis revealed an open reading frame (ORF) of 1,933 bp in length which coded for a polypeptide of 643 amino acid residues. The polypeptide comprised of a signal peptide (37 amino acids), pro-peptide and a mature protein of 390 amino acids. Expression of AT2 lipase resulted in an 18-fold increase in activity, upon the induction of 0.6 mM IPTG after a 10 h incubation period. Interestingly, this lipase was stable in various organic solvents (25% (v/v), mainly toluene, octanol, p-xylene and n-hexane). Literature shows that most of the organic solvent stable bacterial lipases were produced by Pseudomonas sp. and Bacillus sp., but very few from Staphylococcus sp. This lipase demonstrates great potential to be employed in various industrial applications.
    Matched MeSH terms: Bacterial Proteins/genetics
  14. Gan HM, Ibrahim Z, Shahir S, Yahya A
    FEMS Microbiol Lett, 2011 May;318(2):108-14.
    PMID: 21323982 DOI: 10.1111/j.1574-6968.2011.02245.x
    Genes involved in the 4-aminobenzenesulfonate (4-ABS) degradation pathway of Hydrogenophaga sp. PBC were identified using transposon mutagenesis. The screening of 10,000 mutants for incomplete 4-ABS biotransformation identified four mutants with single transposon insertion. Genes with insertions that impaired the ability to utilize 4-ABS for growth included (1) 4-sulfocatechol 1,2-dioxygenase β-subunit (pcaH2) and 3-sulfomuconate cycloisomerase involved in the modified β-ketoadipate pathway; (2) 4-aminobenzenesulfonate 3,4-dioxygenase component (sadA) involved in aromatic ring hydroxylation; and (3) transposase gene homolog with a putative cis-diol dehydrogenase gene located downstream. The pcaH2 mutant strain accumulated brown metabolite during growth on 4-ABS which was identified as 4-sulfocatechol through thin layer chromatography and HPLC analyses. Supplementation of wild-type sadA gene in trans restored the 4-ABS degradation ability of the sadA mutant, thus supporting the annotation of its disrupted gene.
    Matched MeSH terms: Bacterial Proteins/genetics
  15. Amjad N, Osman HA, Razak NA, Kassian J, Din J, bin Abdullah N
    World J. Gastroenterol., 2010 Sep 21;16(35):4443-7.
    PMID: 20845512
    AIM: To study the presence of Helicobacter pylori (H. pylori) virulence factors and clinical outcome in H. pylori infected patients.

    METHODS: A prospective analysis of ninety nine H. pylori-positive patients who underwent endoscopy in our Endoscopy suite were included in this study. DNA was isolated from antral biopsy samples and the presence of cagA, iceA, and iceA2 genotypes were determined by polymerase chain reaction and a reverse hybridization technique. Screening for H. pylori infection was performed in all patients using the rapid urease test (CLO-Test).

    RESULTS: From a total of 326 patients who underwent endoscopy for upper gastrointestinal symptoms, 99 patients were determined to be H. pylori-positive. Peptic ulceration was seen in 33 patients (33%). The main virulence strain observed in this cohort was the cagA gene isolated in 43 patients. cagA was associated with peptic ulcer pathology in 39.5% (17/43) and in 28% (16/56) of non-ulcer patients. IceA1 was present in 29 patients (29%) and iceA2 in 15 patients (15%). Ulcer pathology was seen in 39% (11/29) of patients with iceA1, while 31% (22/70) had normal findings. The corresponding values for iceA2 were 33% (5/15) and 33% (28/84), respectively.

    CONCLUSION: Virulence factors were not common in our cohort. The incidence of factors cagA, iceA1 and iceA2 were very low although variations were noted in different ethnic groups.

    Matched MeSH terms: Bacterial Proteins/genetics*
  16. Tay ST, Cheah PC, Puthucheary SD
    J. Clin. Microbiol., 2010 Apr;48(4):1465-7.
    PMID: 20089759 DOI: 10.1128/JCM.01131-09
    Four flagellin allelic types (I to IV) of Burkholderia pseudomallei were identified based on their sequence variation and restriction fragment length polymorphism (RFLP) analysis of the amplified flagellin gene. Flagellin allelic type I was the most predominantly (75.0%) found among the 100 clinical isolates of B. pseudomallei investigated in this study.
    Matched MeSH terms: Bacterial Proteins/genetics*
  17. Gunell M, Webber MA, Kotilainen P, Lilly AJ, Caddick JM, Jalava J, et al.
    Antimicrob Agents Chemother, 2009 Sep;53(9):3832-6.
    PMID: 19596880 DOI: 10.1128/AAC.00121-09
    Nontyphoidal Salmonella enterica strains with a nonclassical quinolone resistance phenotype were isolated from patients returning from Thailand or Malaysia to Finland. A total of 10 isolates of seven serovars were studied in detail, all of which had reduced susceptibility (MIC > or = 0.125 microg/ml) to ciprofloxacin but were either susceptible or showed only low-level resistance (MIC < or = 32 microg/ml) to nalidixic acid. Phenotypic characterization included susceptibility testing by the agar dilution method and investigation of efflux activity. Genotypic characterization included the screening of mutations in the quinolone resistance-determining regions (QRDR) of gyrA, gyrB, parC, and parE by PCR and denaturing high-pressure liquid chromatography and the amplification of plasmid-mediated quinolone resistance (PMQR) genes qnrA, qnrB, qnrS, qnrD, aac(6')-Ib-cr, and qepA by PCR. PMQR was confirmed by plasmid analysis, Southern hybridization, and plasmid transfer. No mutations in the QRDRs of gyrA, gyrB, parC, or parE were detected with the exception of a Thr57-Ser substitution within ParC seen in all but the S. enterica serovar Typhimurium strains. The qnrA and qnrS genes were the only PMQR determinants detected. Plasmids carrying qnr alleles were transferable in vitro, and the resistance phenotype was reproducible in Escherichia coli DH5alpha transformants. These data demonstrate the emergence of a highly mobile qnr genotype that, in the absence of mutation within topoisomerase genes, confers the nontypical quinolone resistance phenotype in S. enterica isolates. The qnr resistance mechanism enables bacteria to survive elevated quinolone concentrations, and therefore, strains carrying qnr alleles may be able to expand during fluoroquinolone treatment. This is of concern since nonclassical quinolone resistance is plasmid mediated and therefore mobilizable.
    Matched MeSH terms: Bacterial Proteins/genetics
  18. Arushothy R, Ahmad N
    Trop Biomed, 2008 Dec;25(3):259-61.
    PMID: 19287368
    Legionella pneumophila are intracellular pathogens, associated with human disease, attributed to the presence and absence of certain virulent genes. In this study, virulent gene loci (lvh and rtxA regions) associated with human disease were determined. Thirty-three cooling tower water isolates, isolated between 2004 to 2006, were analyzed for the presence of these genes by PCR method. Results showed that 19 of 33 (57.5%) of the L. pneumophila serogroup 1 isolates have both the genes. Six (18.2%) of the isolates have only the lvh gene and 2 (6.1%) of the isolates have only the rtxA gene. However, both genes were absent in 6 (18.2%) of the L. pneumophila isolates. The result of our study provides some insight into the presence of the disease causing L. pneumophila serogroup 1 in the environment. Molecular epidemiological studies will provide better understanding of the prevalence of the disease in Malaysia.
    Matched MeSH terms: Bacterial Proteins/genetics*
Filters
Contact Us

Please provide feedback to Administrator (tengcl@gmail.com)

External Links