Displaying publications 1 - 20 of 22 in total

Abstract:
Sort:
  1. Li M, Li W, Guan Q, Dai X, Lv J, Xia Z, et al.
    ACS Nano, 2021 12 28;15(12):19194-19201.
    PMID: 34797635 DOI: 10.1021/acsnano.1c03882
    Dry adhesives that combine strong adhesion, high transparency, and reusability are needed to support developments in emerging fields such as medical electrodes and the bonding of electronic optical devices. However, achieving all of these features in a single material remains challenging. Herein, we propose a pressure-responsive polyurethane (PU) adhesive inspired by the octopus sucker. This adhesive not only showcases reversible adhesion to both solid materials and biological tissues but also exhibits robust stability and high transparency (>90%). As the adhesive strength of the PU adhesive corresponds to the application force, adhesion could be adjusted by the preloading force and/or pressure. The adhesive exhibits high static adhesion (∼120 kPa) and 180° peeling force (∼500 N/m), which is far stronger than those of most existing artificial dry adhesives. Moreover, the adhesion strength is effectively maintained even after 100 bonding-peeling cycles. Because the adhesive tape relies on the combination of negative pressure and intermolecular forces, it overcomes the underlying problems caused by glue residue like that left by traditional glue tapes after removal. In addition, the PU adhesive also shows wet-cleaning performance; the contaminated tape can recover 90-95% of the lost adhesion strength after being cleaned with water. The results show that an adhesive with a microstructure designed to increase the contribution of negative pressure can combine high reversible adhesion and long fatigue life.
    Matched MeSH terms: Biomimetics*; Biomimetic Materials*
  2. Nur Izzati Mansor, Nuratiqah Azmi, Ling, King-Hwa, Rozita Rosli, Zurina Hassan, Norshariza Nordin
    Neuroscience Research Notes, 2019;2(1):16-30.
    MyJurnal
    The use of in vitromodel for screening pharmacological compounds or natural products has gained global interest. The choice of cells to be manipulated plays a vital role in coming up with the best-suitedmodel for specific diseases, including neurodegenerativediseases (ND). A good in vitro ND model should provide appropriate morphological and molecular features that mimic ND conditions where it can be used to screen potential properties of natural products in addition to unravelling the molecular mechanisms of ND. In this mini review, we intend to demonstrate two prospective stem cell lines as the potential cell source for in vitroND model and compare them to the commonly used cells. The common source of cells that have been usedas the in vitroND models is discussedbefore going into details talking about the two prospective stem cell lines.
    Matched MeSH terms: Biomimetics
  3. Alsultaney, Hazem K., Mohd Khairol Anuar Mohd Ariffin, B.T. Hang Tuah Baharudin, Aidy Ali, Faizal Mustapha
    MyJurnal
    This work was carried out with the aim to optimise the tool path by simulating the removal of material in a finite element environment which is controlled by a genetic algorithm (GA). To simulate the physical removal of material during machining, a finite element model was designed to represent a thin walled workpiece. The target was to develop models which mimic the actual cutting process using the finite element method (FEM), to validate the developed tool path strategy algorithm with the actual machining process and to programme the developed algorithm into the software. The workpiece was to be modelled using the CAD (ABAQUS CAE) software to create a basic geometry co-ordinate system which could then be used to create the finite element method and necessary requirement by ABAQUS, such as the boundary condition, the material type, and the element type.
    Matched MeSH terms: Biomimetics
  4. Liu J, Tan CS, Yu Z, Lan Y, Abell C, Scherman OA
    Adv Mater, 2017 Mar;29(10).
    PMID: 28092128 DOI: 10.1002/adma.201604951
    Biomimetic supramolecular dual networks: By mimicking the structure/function model of titin, integration of dynamic cucurbit[8]uril mediated host-guest interactions with a trace amount of covalent cross-linking leads to hierarchical dual networks with intriguing toughness, strength, elasticity, and energy dissipation properties. Dynamic host-guest interactions can be dissociated as sacrificial bonds and their facile reformation results in self-recovery of the dual network structure as well as its mechanical properties.
    Matched MeSH terms: Biomimetics
  5. Chun TS, Malek MA, Ismail AR
    Environ Sci Process Impacts, 2014 Sep 20;16(9):2208-14.
    PMID: 25005632 DOI: 10.1039/c4em00282b
    Effluent discharge from septic tanks is affecting the environment in developing countries. The most challenging issue facing these countries is the cost of inadequate sanitation, which includes significant economic, social, and environmental burdens. Although most sanitation facilities are evaluated based on their immediate costs and benefits, their long-term performance should also be investigated. In this study, effluent quality-namely, the biological oxygen demand (BOD), chemical oxygen demand (COD), and total suspended solid (TSS)-was assessed using a biomimetics engineering approach. A novel immune network algorithm (INA) approach was applied to a septic sludge treatment plant (SSTP) for effluent-removal predictive modelling. The Matang SSTP in the city of Kuching, Sarawak, on the island of Borneo, was selected as a case study. Monthly effluent discharges from 2007 to 2011 were used for training, validating, and testing purposes using MATLAB 7.10. The results showed that the BOD effluent-discharge prediction was less than 50% of the specified standard after the 97(th) month of operation. The COD and TSS effluent removals were simulated at the 85(th) and the 121(st) months, respectively. The study proved that the proposed INA-based SSTP model could be used to achieve an effective SSTP assessment and management technique.
    Matched MeSH terms: Biomimetics*
  6. Taha AM, Mustapha A, Chen SD
    ScientificWorldJournal, 2013;2013:325973.
    PMID: 24396295 DOI: 10.1155/2013/325973
    When the amount of data and information is said to double in every 20 months or so, feature selection has become highly important and beneficial. Further improvements in feature selection will positively affect a wide array of applications in fields such as pattern recognition, machine learning, or signal processing. Bio-inspired method called Bat Algorithm hybridized with a Naive Bayes classifier has been presented in this work. The performance of the proposed feature selection algorithm was investigated using twelve benchmark datasets from different domains and was compared to three other well-known feature selection algorithms. Discussion focused on four perspectives: number of features, classification accuracy, stability, and feature generalization. The results showed that BANB significantly outperformed other algorithms in selecting lower number of features, hence removing irrelevant, redundant, or noisy features while maintaining the classification accuracy. BANB is also proven to be more stable than other methods and is capable of producing more general feature subsets.
    Matched MeSH terms: Biomimetics/methods*
  7. Adnan MA, Abdur Razzaque M, Ahmed I, Isnin IF
    Sensors (Basel), 2013;14(1):299-345.
    PMID: 24368702 DOI: 10.3390/s140100299
    For the past 20 years, many authors have focused their investigations on wireless sensor networks. Various issues related to wireless sensor networks such as energy minimization (optimization), compression schemes, self-organizing network algorithms, routing protocols, quality of service management, security, energy harvesting, etc., have been extensively explored. The three most important issues among these are energy efficiency, quality of service and security management. To get the best possible results in one or more of these issues in wireless sensor networks optimization is necessary. Furthermore, in number of applications (e.g., body area sensor networks, vehicular ad hoc networks) these issues might conflict and require a trade-off amongst them. Due to the high energy consumption and data processing requirements, the use of classical algorithms has historically been disregarded. In this context contemporary researchers started using bio-mimetic strategy-based optimization techniques in the field of wireless sensor networks. These techniques are diverse and involve many different optimization algorithms. As far as we know, most existing works tend to focus only on optimization of one specific issue of the three mentioned above. It is high time that these individual efforts are put into perspective and a more holistic view is taken. In this paper we take a step in that direction by presenting a survey of the literature in the area of wireless sensor network optimization concentrating especially on the three most widely used bio-mimetic algorithms, namely, particle swarm optimization, ant colony optimization and genetic algorithm. In addition, to stimulate new research and development interests in this field, open research issues, challenges and future research directions are highlighted.
    Matched MeSH terms: Biomimetics
  8. Yeong, Lee-chian, Veno Rajendran, Che Zubaidah Che Daud, Hung, Liang-choo
    MyJurnal
    Neonates are obligate nasal breather until they are at least two to five months old. Congenital nasal airway obstruction is one of the commonest causes of respiratory problem in newborn. Congenital nasal pyriform aperture stenosis (CNPAS) was first described by Brown et al in 1989 [1] and is a rare cause of nasal airway obstruction which may clinically mimic choanal atresia.(Copied from article)
    Matched MeSH terms: Biomimetics
  9. Law JX, Liau LL, Saim A, Yang Y, Idrus R
    Tissue Eng Regen Med, 2017 Dec;14(6):699-718.
    PMID: 30603521 DOI: 10.1007/s13770-017-0075-9
    Electrospinning is a simple and versatile technique to fabricate continuous fibers with diameter ranging from micrometers to a few nanometers. To date, the number of polymers that have been electrospun has exceeded 200. In recent years, electrospinning has become one of the most popular scaffold fabrication techniques to prepare nanofiber mesh for tissue engineering applications. Collagen, the most abundant extracellular matrix protein in the human body, has been electrospun to fabricate biomimetic scaffolds that imitate the architecture of native human tissues. As collagen nanofibers are mechanically weak in nature, it is commonly cross-linked or blended with synthetic polymers to improve the mechanical strength without compromising the biological activity. Electrospun collagen nanofiber mesh has high surface area to volume ratio, tunable diameter and porosity, and excellent biological activity to regulate cell function and tissue formation. Due to these advantages, collagen nanofibers have been tested for the regeneration of a myriad of tissues and organs. In this review, we gave an overview of electrospinning, encompassing the history, the instrument settings, the spinning process and the parameters that affect fiber formation, with emphasis given to collagen nanofibers' fabrication and application, especially the use of collagen nanofibers in skin tissue engineering.
    Matched MeSH terms: Biomimetics
  10. Hong FJ, Low YY, Chong KW, Thomas NF, Kam TS
    J Org Chem, 2014 May 16;79(10):4528-43.
    PMID: 24754525 DOI: 10.1021/jo500559r
    A systematic study of the electrochemical oxidation of 1,2-diarylalkenes was carried out with the focus on detailed product studies and variation of product type as a function of aromatic substitution. A reinvestigation of the electrochemical oxidation of 4,4'-dimethoxystilbene under various conditions was first carried out, and all products formed were fully characterized and quantitated. This was followed by a systematic investigation of the effect of aromatic substitution on the nature and distribution of the products. The aromatic substituents were found to fall into three main categories, viz., substrates in which the nature and position of the aromatic substituents gave rise to essentially the same products as 4,4'-dimethoxystilbene, for example, tetraaryltetrahydrofurans, dehydrotetralins, and aldehydes (p-MeO or p-NMe2 on one ring and X on the other ring, where X = o-MeO or p-alkyl, or m- or p-EWG; e.g., 4-methoxy-4'-trifluoromethylstilbene); those that gave rise to a mixture of indanyl (or tetralinyl) acetamides and dehydrotetralins (or pallidols) (both or one ring substituted by alkyl groups, e.g., 4,4'-dimethylstilbene); and those where strategic placement of donor groups, such as OMe and OH, led to the formation of ampelopsin F and pallidol-type carbon skeletons (e.g., 4,3',4'-trimethoxystilbene). Reaction pathways to rationalize the formation of the different products are presented.
    Matched MeSH terms: Biomimetics
  11. Zakaria NZ, Masnan MJ, Zakaria A, Shakaff AY
    Sensors (Basel), 2014;14(7):12233-55.
    PMID: 25010697 DOI: 10.3390/s140712233
    Herbal-based products are becoming a widespread production trend among manufacturers for the domestic and international markets. As the production increases to meet the market demand, it is very crucial for the manufacturer to ensure that their products have met specific criteria and fulfil the intended quality determined by the quality controller. One famous herbal-based product is herbal tea. This paper investigates bio-inspired flavour assessments in a data fusion framework involving an e-nose and e-tongue. The objectives are to attain good classification of different types and brands of herbal tea, classification of different flavour masking effects and finally classification of different concentrations of herbal tea. Two data fusion levels were employed in this research, low level data fusion and intermediate level data fusion. Four classification approaches; LDA, SVM, KNN and PNN were examined in search of the best classifier to achieve the research objectives. In order to evaluate the classifiers' performance, an error estimator based on k-fold cross validation and leave-one-out were applied. Classification based on GC-MS TIC data was also included as a comparison to the classification performance using fusion approaches. Generally, KNN outperformed the other classification techniques for the three flavour assessments in the low level data fusion and intermediate level data fusion. However, the classification results based on GC-MS TIC data are varied.
    Matched MeSH terms: Biomimetics/instrumentation*
  12. Lutfi SL, Fernández-Martínez F, Lorenzo-Trueba J, Barra-Chicote R, Montero JM
    Sensors (Basel), 2013;13(8):10519-38.
    PMID: 23945740 DOI: 10.3390/s130810519
    We describe the work on infusion of emotion into a limited-task autonomous spoken conversational agent situated in the domestic environment, using a need-inspired task-independent emotion model (NEMO). In order to demonstrate the generation of affect through the use of the model, we describe the work of integrating it with a natural-language mixed-initiative HiFi-control spoken conversational agent (SCA). NEMO and the host system communicate externally, removing the need for the Dialog Manager to be modified, as is done in most existing dialog systems, in order to be adaptive. The first part of the paper concerns the integration between NEMO and the host agent. The second part summarizes the work on automatic affect prediction, namely, frustration and contentment, from dialog features, a non-conventional source, in the attempt of moving towards a more user-centric approach. The final part reports the evaluation results obtained from a user study, in which both versions of the agent (non-adaptive and emotionally-adaptive) were compared. The results provide substantial evidences with respect to the benefits of adding emotion in a spoken conversational agent, especially in mitigating users' frustrations and, ultimately, improving their satisfaction.
    Matched MeSH terms: Biomimetics/methods*
  13. Velu SS, Buniyamin I, Ching LK, Feroz F, Noorbatcha I, Gee LC, et al.
    Chemistry, 2008;14(36):11376-84.
    PMID: 19003831 DOI: 10.1002/chem.200801575
    Oligostilbenoids are polyphenols that are widely distributed in nature with multifaceted biological activities. To achieve biomimetic synthesis of unnatural derivatives, we subjected three resveratrol analogues to oligomerization by means of one-electron oxidants. Upon varying the metal oxidant (AgOAc, CuBr(2), FeCl(3)6 H(2)O, FeCl(3)6 H(2)O/NaI, PbO(2), VOF(3)), the solvent (over the whole range of polarities), and the oxygenated substitution pattern of the starting material, stilbenoid oligomers with totally different carbon skeletons were obtained. Here we propose to explain the determinism of the type of skeleton produced with the aid of hard and soft acid/base concepts in conjunction with the solvating properties of the solvents and the preferred alignment by the effect of pi stacking.
    Matched MeSH terms: Biomimetics*
  14. TermehYousefi A, Tateno K, Bagheri S, Tanaka H
    Sci Rep, 2017 05 09;7(1):1623.
    PMID: 28487527 DOI: 10.1038/s41598-017-01855-5
    A method to fabricate a bioinspired nanobiosensor using electronic-based artificial taste receptors for glucose diagnosis is presented. Fabricated bioinspired glucose nanobiosensor designated based on an artificial taste bud including an amperometric glucose biosensor and taste bud-inspired circuits. In fact, the design of the taste bud-inspired circuits was inspired by the signal-processing mechanism of taste nerves which involves two layers. The first, known as a type II cell, detects the glucose by glucose oxidase and transduces the current signal obtained for the pulse pattern is conducted to the second layer, called type III cell, to induce synchronisation of the neural spiking activity. The oscillation results of fabricated bioinspired glucose nanobiosensor confirmed an increase in the frequency of the output pulse as a function of the glucose concentration. At high glucose concentrations, the bioinspired glucose nanobiosensor showed a pulse train of alternating short and long interpulse intervals. A computational analysis performed to validate the hypothesis, which was successfully reproduced the alternating behaviour of bioinspired glucose our nanobiosensor by increasing the output frequency and alternation of pulse intervals according to the reduction in the resistivity of the biosensor.
    Matched MeSH terms: Biomimetics*
  15. Ibrahim MD, Amran SNA, Yunos YS, Rahman MRA, Mohtar MZ, Wong LK, et al.
    Appl Bionics Biomech, 2018;2018:7854321.
    PMID: 29853998 DOI: 10.1155/2018/7854321
    The skin of a fast swimming shark reveals riblet structures that help reduce the shark's skin friction drag, enhancing its efficiency and speed while moving in the water. Inspired by the structure of the shark skin denticles, our team has carried out a study as an effort in improving the hydrodynamic design of marine vessels through hull design modification which was inspired by this riblet structure of shark skin denticle. Our study covers on macroscaled design modification. This is an attempt to propose an alternative for a better economical and practical modification to obtain a more optimum cruising characteristics for marine vessels. The models used for this study are constructed using computer-aided design (CAD) software, and computational fluid dynamic (CFD) simulations are then carried out to predict the effectiveness of the hydrodynamic effects of the biomimetic shark skins on those models. Interestingly, the numerical calculated results obtained show that the presence of biomimetic shark skin implemented on the vessels give about 3.75% reduction of drag coefficient as well as reducing up to 3.89% in drag force experienced by the vessels. Theoretically, as force drag can be reduced, it can lead to a more efficient vessel with a better cruising speed. This will give better impact to shipping or marine industries around the world. However, it can be suggested that an experimental procedure is best to be conducted to verify the numerical result that has been obtained for further improvement on this research.
    Matched MeSH terms: Biomimetics
  16. Bapat RA, Dharmadhikari S, Chaubal TV, Amin MCIM, Bapat P, Gorain B, et al.
    Heliyon, 2019 Oct;5(10):e02544.
    PMID: 31687479 DOI: 10.1016/j.heliyon.2019.e02544
    Dendrimers are hyperbranched nanoparticle structures along with its surface modifications can to be used in dental biomaterials for biomimetic remineralisation of enamel and dentin. The review highlights the therapeutic applications of dendrimers in the field of dentistry. It addresses the possible mechanisms of enhancement of mechanical properties of adhesives and resins structure. Dendrimers due to its unique construction of possessing inner hydrophobic and outer hydrophilic structure can act as drug carrier for delivery of antimicrobial drugs for treatment of periodontal diseases and at peripheral dental implant areas. Dendrimers due to its hyperbranched structures can provides a unique drug delivery vehicle for delivery of a drug at specific site for sustained release for therapeutic effects. Thus, dendrimers can be one of the most important constituents which can be incorporated in dental biomaterials for better outcomes in dentistry.
    Matched MeSH terms: Biomimetics
  17. Hassan MI, Masnawi NN, Sultana N
    ASAIO J., 2017 9 14;64(3):415-423.
    PMID: 28901994 DOI: 10.1097/MAT.0000000000000655
    Conductive materials are potential candidates for developing bone tissue engineering scaffolds as they are nontoxic and can enhance bone tissue regeneration. Their bioactivity can be enhanced by depositing biomineralization in simulated body fluid (SBF). In the current study, a composite electrospun membrane made up of poly(lactic) acid, poly(3-hydroxybutyrate-co-3-hydroxyvalerate), and hydroxyapatite was fabricated using an electrospinning method. The fabricated membranes were dip-coated with a conductive polymer solution, poly(3,4-ethylenedioxythiophene) poly(4-styrenesulfonate), to induce conductivity. Characterization of the membranes based on characteristics such as morphology, chemical bonding, and wettability was conducted using scanning electron microscopy, field emission scanning electron microscopy, energy-dispersive X-ray spectroscopy, attenuated total reflectance Fourier transform infrared spectroscopy, and contact angle measurement. From the results, biomineralization of both coated and noncoated composite membranes was observed on the surface of nanofibers after 21 days in SBF. The membranes provide a superhydrophilic surface as shown by the contact angle. In conclusion, this biomimetic electrospun composite membrane could be used to further support cell growth for bone tissue engineering application.
    Matched MeSH terms: Biomimetics
  18. Nordin D, Yarkoni O, Donlon L, Savinykh N, Frankel D
    Chem Commun (Camb), 2012 Jan 18;48(5):672-4.
    PMID: 22129789 DOI: 10.1039/c1cc15902j
    Highly ordered ring-like structures are formed via the directed assembly of lipid domains in supported bilayers, using the extracellular matrix protein fibronectin. The ability of biological molecules to guide nanoscale assembly suggests potential biomimetic approaches to nanoscale structures.
    Matched MeSH terms: Biomimetics/methods*
  19. Zakaria A, Shakaff AY, Masnan MJ, Ahmad MN, Adom AH, Jaafar MN, et al.
    Sensors (Basel), 2011;11(8):7799-822.
    PMID: 22164046 DOI: 10.3390/s110807799
    The major compounds in honey are carbohydrates such as monosaccharides and disaccharides. The same compounds are found in cane-sugar concentrates. Unfortunately when sugar concentrate is added to honey, laboratory assessments are found to be ineffective in detecting this adulteration. Unlike tracing heavy metals in honey, sugar adulterated honey is much trickier and harder to detect, and traditionally it has been very challenging to come up with a suitable method to prove the presence of adulterants in honey products. This paper proposes a combination of array sensing and multi-modality sensor fusion that can effectively discriminate the samples not only based on the compounds present in the sample but also mimic the way humans perceive flavours and aromas. Conversely, analytical instruments are based on chemical separations which may alter the properties of the volatiles or flavours of a particular honey. The present work is focused on classifying 18 samples of different honeys, sugar syrups and adulterated samples using data fusion of electronic nose (e-nose) and electronic tongue (e-tongue) measurements. Each group of samples was evaluated separately by the e-nose and e-tongue. Principal Component Analysis (PCA) and Linear Discriminant Analysis (LDA) were able to separately discriminate monofloral honey from sugar syrup, and polyfloral honey from sugar and adulterated samples using the e-nose and e-tongue. The e-nose was observed to give better separation compared to e-tongue assessment, particularly when LDA was applied. However, when all samples were combined in one classification analysis, neither PCA nor LDA were able to discriminate between honeys of different floral origins, sugar syrup and adulterated samples. By applying a sensor fusion technique, the classification for the 18 different samples was improved. Significant improvement was observed using PCA, while LDA not only improved the discrimination but also gave better classification. An improvement in performance was also observed using a Probabilistic Neural Network classifier when the e-nose and e-tongue data were fused.
    Matched MeSH terms: Biomimetics*
  20. Nath RK, Zain MF, Kadhum AA
    ScientificWorldJournal, 2013;2013:686497.
    PMID: 24376384 DOI: 10.1155/2013/686497
    The addition of a photocatalyst to ordinary building materials such as concrete creates environmentally friendly materials by which air pollution or pollution of the surface can be diminished. The use of LiNbO3 photocatalyst in concrete material would be more beneficial since it can produce artificial photosynthesis in concrete. In these research photoassisted solid-gas phases reduction of carbon dioxide (artificial photosynthesis) was performed using a photocatalyst, LiNbO3, coated on concrete surface under illumination of UV-visible or sunlight and showed that LiNbO3 achieved high conversion of CO2 into products despite the low levels of band-gap light available. The high reaction efficiency of LiNbO3 is explained by its strong remnant polarization (70 µC/cm(2)), allowing a longer lifetime of photoinduced carriers as well as an alternative reaction pathway. Due to the ease of usage and good photocatalytic efficiency, the research work done showed its potential application in pollution prevention.
    Matched MeSH terms: Biomimetics/methods*
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links