Hyperkalaemia is a life threatening acute medical emergency. Patients with end stage renal failure are more prone to get hyperkalaemia as potassium is normally excreted via the kidneys. Therefore, patients with end stage renal failure should avoid food with high potassium contents. Bananas are well known to have high potassium content. However, the 'king of fruits' the durian, has higher potassium content compared to bananas. We describe a case of life threatening hyperkalaemia in a lady with end stage renal failure who ate durians prior to her presentation.
Durian shell (DS) was pyrolyzed in a drop-type fixed-bed reactor to study the physicochemical properties of the products. The experiment was carried out with different particle sizes (up to 5mm) and reaction temperatures (250-650°C). The highest bio-oil yield was obtained at 650°C (57.45wt%) with DS size of 1-2mm. The elemental composition and higher heating value of the feedstock, bio-oil (650°C), and bio-char (650°C) were determined and compared. The compositions of product gases were determined via gas chromatography with thermal conductivity detector. The chemical composition of bio-oil was analyzed by gas chromatography-mass spectrometry. The bio-oil produced at lower temperature yields more alcohols, whereas the bio-oil produced at higher temperature contains more aromatics and carbonyls. Bio-oil has potential to be used as liquid fuel or fine chemical precursor after further upgrading. The results further showed the potential of bio-char as a solid fuel.
Durian peel, an abundant waste in Malaysia could be a potential substrate for fermentable sugar recovery for value-added biochemical production. Common pretreatment such as acid or alkaline pretreatment resulted in the need for extensive solid washing which generated wastewater. Herein, this study aims to introduce sonication on top of chemical pretreatment to destruct lignin and reduce the chemical usage during the durian peel pretreatment process. In this study, the morphology and the chemical composition of the pretreated durian peels were studied. The sugar yield produced from the chemical pretreatment and the combined ultrasound and chemical pretreatment were compared. The morphology and chemical structure of durian peels were investigated by Scanning Electron Microscope (SEM), Fourier Transform Infrared (FTIR) analysis and X-ray diffraction (XRD). The SEM images showed that the structural change became more significant when sonication was introduced. Second, XRD profile indicated a relatively higher crystallinity index and FTIR spectra displayed a lower intensity of lignin and hemicellulose for ultrasound plus alkaline (UB) pretreatment as compared to acid, alkaline and ultrasound plus acid (UA) pretreatment. UB and UA pretreatment portrayed higher yield (376.60 ± 12.14 and 237.38 ± 3.96 mg reducing sugar/g dry biomass, respectively) than their controls without the application of ultrasound. Therefore, it could be concluded that ultrasound was able to intensify the fermentable sugar recovery from durian peel by inducing physical and chemical effect of cavitation to alter the morphology of durian peel. Fermentation of UB treated durian peel resulted in 2.68 mol hydrogen/mol consumed sugar and 131.56 mL/Lmedium/h of hydrogen productivity. This study is important because it will shed light on a way to handle durian waste disposal problems and generate fermentable sugars for the production of high value-added products.
Durian may inflict severe body injury when it drops from the tree. This case report describes a patient who presented with facial and penetrating eye injury when a ripe durian fruit dropped onto her face while harvesting the fruits under the tree. The authors emphasized the importance of facial and eye protective devices during durian fruit harvesting season.
This study investigated the behavior and mechanisms of cross-linked Durio zibethinus seed starch (CDSS) flocculants for landfill leachate treatment. A physical-chemical treatment method of coagulation-flocculation process and starch modification were implemented in treating stabilized leachate from Matang Landfill, Perak, Malaysia. In practical, the removal performance of color, COD, suspended solid and turbidity for CDSS flocculants were evaluated by combining with primary coagulant of polyaluminium chloride (PAC). In this study, the application of crosslinking modification for Durio zibethinus seed waste starch flocculants showed good improvement. The impurities removal for colour, COD, suspended solid and turbidity were increased by the addition of CDSS flocculants. Furthermore, the average size of the floc was also increased from 60.24 µm to 89.5 µm. Despite, the addition of CDSS flocculants produced a reduction of PAC coagulant from 2700 mg/L to 2200 mg/L, with 500 mg/L reduction on the PAC dosage dependency. Therefore, these results affirmed the potentials of crosslinked modification for Durio zibethinus seed waste starch flocculants in landfill leachate treatment.
More than 200 different cultivars of durian exist worldwide but Durio zibethinus or Musang King (MK) is the most premium and prized durian fruit among the recommended varieties. Early identification of this premium variety is critical to protect from non-authentic MK durian cultivars. However, the MK variety's morphological traits are nearly identical to other varieties. Currently, the identification of durian varieties is mostly performed via evaluation of leaf shape, fruit shape, aroma, taste and seed shape and this requires trained personnel for the morphology observation. To enable the rapid identification of the MK variety, PCR amplification of ten durian varieties using six gene candidates from the chloroplast genome was first performed to obtain DNA probes that were specific to the MK durian variety. PCR amplification of ten durian varieties using primers designed confirmed that the nadhA gene sequence showed an obvious difference in the MK variety from other durian varieties. The unique sequence of MK was used as a DNA probe to develop an electrochemical biosensor for the direct identification of the MK durian variety. The electrochemical biosensor was based on the hybridization response of the immobilized DNA probe with the target DNA from the MK variety and was monitored via differential pulse voltammetry technique. Under optimal conditions, the DNA electrochemical biosensor showed a low detection limit at 10% of MK genomic DNA concentration with a wide linear calibration range of 0.05-1.5 µM (R2 = 0.9891) and RSD value of 3.77% (n = 3). The results of the developed DNA biosensor provide high promise for the development of portable sensors employed in the determination of MK variety in the field.
Pectin and modified pectin differ in the structure of the chains in which the modified version of pectin is shorter in length, non-branched, and galactose-rich. These differences in structure may be exploited for the removal of heavy metals. Durian (Durio zibethinus) rind, that is regarded as agri-food waste was processed into durian rind pectin (DRP) and modified durian rind pectin (mDRP). DRP and mDRP were evaluated as biosorbent for removal of toxic heavy metals (Pb(II), Cd(II), Cu(II), Zn(II) and Ni(II)) and were compared with two commercial products; citrus pectin (CP) and modified citrus pectin (MCP). In general, the order of removal of heavy metals by all biosorbents was Cu(II) > Pb(II) > Ni(II) > Zn > Cd(II). Except for the removal of Pb(II), the order of effectiveness of heavy metal removal of the biosorbents was MCP > mDRP > CP > DRP. MCP, a commercial biosorbent showed the best biosorbent ability, and mDRP a waste product from durian was also a favorable sorber that should be considered for sorption and removal of heavy metals.
Kajian anatomi perbandingan daun dilakukan ke atas tiga spesies daripada genus Coelostegia (C. griffithii, C. borneensis dan C. chartacea) dan juga Ceiba pentandra Gaertn. (Bombacaceae) sebagai spesies perbandingan dalam famili yang sama. Kajian yang dilakukan melibatkan keratan rentas lamina dan tepi daun menggunakan mikrotom gelongsor. Penjernihan daun dilakukan menggunakan larutan 1% Basic Fuchsin di dalam 10% KOH. Hasil kajian menunjukkan ciri sepunya semua spesies Coelostegia yang dikaji iaitu kehadiran sel lendir, jenis trikom, jenis dan taburan hablur, kehadiran sel sklerenkima dan jenis peruratan tengah lamina. Ciri unik yang dikongsi oleh semua spesies genus Coelostegia ialah kehadiran satu hablur tunggal di atas berkas vaskular lamina yang menyambungkannya ke bahagian adaksial epidermis dan seakan-akan membentuk tiang serabut. Manakala variasi interspesies dalam Coelostegia yang boleh digunakan untuk membezakan spesies dalam genus ini ialah bentuk luaran tepi daun, peruratan tepi daun dan taburan trikom. Dalam kajian ini, terdapat tujuh ciri yang boleh membezakan antara Coelostegia dan Ceiba pentandra. Ciri tersebut adalah kehadiran trakeid membengkak yang dapat dilihat pada peruratan lamina, corak berkas vaskular pada tulang daun dan petiol, kehadiran dan jenis hablur, kehadiran dan jenis trikom, sel lendir, sklerenkima pada lamina, hipodermis, sklerenkima pada berkas vaskular petiol dan kehadiran kolenkima. Kajian ini membuktikan bahawa gabungan beberapa ciri anatomi daun mempunyai nilai taksonomi yang boleh digunakan untuk membezakan spesies.
Kajian kehadiran dan jenis trikom telah dijalankan ke atas lima spesies Neesia daripada famili Bombacaceae. Hasil menunjukkan bahawa kehadiran trikom jenis dendritik, berkelenjar, ringkas unisel, peltat sisik dan stelat dalam genus Neesia. Kehadiran trikom stelat boleh dijadikan ciri diagnosis spesies Neesia malayana, trikom peltat sisik bagi Neesia altissima dan trikom ringkas unisel bagi Neesia piluliflora. Trikom berkelenjar merupakan ciri sepunya dalam semua spesies yang dikaji. Sementara kehadiran trikom dendritik tidak mempunyai nilai taksonomi yang begitu signifikan tetapi masih boleh digunakan untuk membezakan spesies. Kesimpulannya hasil kajian ini menunjukkan bahawa kehadiran trikom pada lamina daun Neesia mempunyai nilai taksonomi terutamanya di peringkat spesies.
Kajian ini dijalankan untuk menentukan komposisi proksimat dan juga kandungan asid lemak durian kuning (Durio graveolens Becc.) Sabah. Kandungan lembapan, abu, protein kasar, lemak kasar, serat kasar, karbohidrat dan asid lemak telah ditentukan. Keputusan analisis proksimat menunjukkan durian kuning Sabah mempunyai kandungan lembapan sebanyak 66.5%, protein 3.1%, lemak 5.5%, abu 1.1%, serat kasar 3.7% dan 20.2% karbohidrat. Sebanyak 13 komponen asid lemak telah dikenal pasti dengan peratusan asid lemak tepu adalah lebih rendah (30.3%) berbanding asid lemak tidak tepu (69.7%). Peratusan asid lemak tepu yang paling tinggi adalah asid miristik (14.5%) manakala asid laurik adalah terendah (1.3%). Untuk asid lemak tidak tepu pula, asid oleik paling tinggi (22.2%) manakala asid lemak miristoleik paling rendah (1.9%).
This review focuses on providing informations on potential uses of durian, an exotic tropical fruit as a source of food, as well as a potential therapeutic agent. Apart from disseminating details on the traditional value, in this review we have focussed on the nutritional composition, presence of bioactive compounds, volatiles, antimicrobials, as well as on the toxicological effects of durian fruit consumption. Durian fruits are enjoyed for their unique taste and organoleptic qualities, but there is also a need to ensure that their potential is exploited for the international market. In addition, in the present socio-economic scenario, tapping the potential of exotic tropical fruit such as durian could benefit the health of consumers as well as support the local population who depend on farming for a livelihood. Overall, it is envisaged that identifying the nutraceutical potential of the edible and non-edible parts of durian fruits can benefit food and pharmaceutical industries.
The present work was conducted to investigate the effect of purification and conjugation processes on functional properties of durian seed gum (DSG) used for stabilization of water in oil in water (W/O/W) emulsion. Whey protein isolate (WPI) was conjugated to durian seed gum through the covalent linkage. In order to prepare WPI-DSG conjugate, covalent linkage of whey protein isolate to durian seed gum was obtained by Maillard reaction induced by heating at 60 °C and 80% (±1%) relative humidity. SDS-polyacrylamide gel electrophoresis was used to test the formation of the covalent linkage between whey protein isolate and durian seed gum after conjugation process. In this study, W/O/W stabilized by WPI-conjugated DSG A showed the highest interface activity and lowest creaming layer among all prepared emulsions. This indicated that the partial conjugation of WPI to DSG significantly improved its functional characteristics in W/O/W emulsion. The addition of WPI-conjugated DSG to W/O/W emulsion increased the viscosity more than non-conjugated durian seed gum (or control). This might be due to possible increment of the molecular weight after linking the protein fraction to the structure of durian seed gum through the conjugation process.
The aim of the present study was to investigate the effects of different purification and drying methods on the viscoelastic behaviour and rheological properties of durian seed gum. The results indicated that the purified gum A (using isopropanol and ethanol) and D (using hydrochloric acid and ethanol) showed the highest and lowest viscosity, respectively. Four drying techniques included oven drying (105 °C), freeze drying, spray drying and vacuum oven drying. In the present work, all purified gums exhibited more elastic (gel-like) behaviour than the viscous (liquid-like) behaviour (G″
Durian seed is an agricultural biomass waste of durian fruit. It can be a natural plant source of non-starch polysaccharide gum with potential functional properties. The main goal of the present study was to investigate the effect of chemical extraction variables (i.e., the decolouring time, soaking temperature and soaking time) on the physicochemical properties of durian seed gum. The physicochemical and functional properties of chemically-extracted durian seed gum were assessed by determining the particle size and distribution, solubility and the water- and oil-holding capacity (WHC and OHC). The present work revealed that the soaking time should be considered as the most critical extraction variable affecting the physicochemical properties of crude durian seed gum.
Response surface methodology (RSM) was carried out to study the effect of temperature, pH, and heating time as input variables on the yield and degree of esterification (DE) as the output (responses). The results showed that yield and DE of extracted pectin ranged from 2.27% to 9.35% (w/w, based on dry weight of durian rind) and 47.66% to 68.6%, respectively. The results also showed that a 2nd-order model adequately fitted the experimental data for the yield and DE. Optimum condition for maximum yield and DE was achieved at 85 degrees C, a time of either 4 or 1 h, and a pH of 2 or 2.5.
The daily variations in the in situ CO(2) exchange of the reproductive organs of Durio zibethinus trees, growing in an experimental field at University Putra Malaysia (UPM), were examined at different growth stages. Reproductive organs emerged on the leafless portions of branches inside the crown. The photon flux densities (PFD) in the chambers used for the measurements were less than 100 mumol m(-2) s(-1) and were 40% of the PFD outside of the crown. The daytime net respiration rate and the nighttime dark respiration rate were higher at the time of flower initiation and during the mixed stages, when flower buds, flowers, and fruit coexist, than at the flower bud stage. The net respiration rate was lower than the daytime dark respiration rate at given temperatures, especially at the flower bud and fruit stages. Conversely, the net respiration rate was similar to the daytime dark respiration rate at the mixed stage. Photosynthetic CO(2) refixation reduced the daily respiratory loss by 17, 5, 0.3, and 24% at the flower bud, flower initiation, mixed, and fruit stages, respectively.
Herein, tropical fruit biomass wastes including durian seeds (DS) and rambutan peels (RP) were used as sustainable precursors for preparing activated carbon (DSRPAC) using microwave-induced H3PO4 activation. The textural and physicochemical characteristics of DSRPAC were investigated by N2 adsorption-desorption isotherms, X-ray diffraction, Fourier transform infrared, point of zero charge, and scanning electron microscope analyses. These findings reveal that the DSRPAC has a mean pore diameter of 3.79 nm and a specific surface area of 104.2 m2/g. DSRPAC was applied as a green adsorbent to extensively investigate the removal of an organic dye (methylene blue, MB) from aqueous solutions. The response surface methodology Box-Behnken design (RSM-BBD) was used to evaluate the vital adsorption characteristics, which included (A) DSRPAC dosage (0.02-0.12 g/L), (B) pH (4-10), and (C) time (10-70 min). The BBD model specified that the DSRPAC dosage (0.12 g/L), pH (10), and time (40 min) parameters caused the largest removal of MB (82.1%). The adsorption isotherm findings reveal that MB adsorption pursues the Freundlich model, whereas the kinetic data can be well described by the pseudo-first-order and pseudo-second-order models. DSRPAC exhibited good MB adsorption capability (118.5 mg/g). Several mechanisms control MB adsorption by the DSRPAC, including electrostatic forces, π-π stacking, and H-bonding. This work shows that DSRPAC derived from DS and RP could serve as a viable adsorbent for the treatment of industrial effluents containing organic dye.
A secure aquatic environment is essential for both aquatic and terrestrial life. However, rising populations and the industrial revolution have had a significant impact on the quality of the water environment. Despite the implementation of strong and adapted environmental policies for water treatment worldwide, the issue of organic dyes in wastewater remains challenging. Thus, this study aimed to develop an efficient, cost-effective, and sustainable material to treat methylene blue (MB) in an aqueous environment. In this research, maize extract solution (MES) was utilized as a green cross-linker to induce precipitation, conjugation, and enhance the adsorption performance of graphene oxide (GO) cross-linked with durian shell activated carbon (DSAC), resulting in the formation of a GO@DSAC composite. The composite was investigated for its adsorptive performance toward MB in aqueous media. The physicochemical characterization demonstrated that the cross-linking method significantly influenced the porous structure and surface chemistry of GO@DSAC. BET analysis revealed that the GO@DSAC exhibited dominant mesopores with a surface area of 803.67 m2/g. EDX and XPS measurements confirmed the successful cross-linking of GO with DSAC. The adsorption experiments were well described by the Harkin-Jura model and they followed pseudo-second order kinetics. The maximum adsorption capacity reached 666.67 mg/g at 318 K. Thermodynamic evaluation indicated a spontaneous, feasible, and endothermic in nature. Regenerability and reusability investigations demonstrated that the GO@DSAC composite could be reused for up to 10 desorption-adsorption cycles with a removal efficiency of 81.78%. The selective adsorptive performance of GO@DSAC was examined in a binary system containing Rhodamine B (RhB) and methylene orange (MO). The results showed a separation efficiency (α) of 98.89% for MB/MO and 93.66% for MB/RhB mixtures, underscoring outstanding separation capabilities of the GO@DSAC composite. Overall, the GO@DSAC composite displayed promising potential for the effective removal of cationic dyes from wastewater.
This paper deals with the conjugation of durian seed gum (DSG) with whey protein isolate (WPI) through Maillard reactions. Subsequently, the functional properties of durian seed gum in the non-conjugated (control sample) and conjugated forms were compared with several commercial gums (i.e., Arabic gum, sodium alginate, kappa carrageenan, guar gum, and pectin). The current study revealed that the conjugation of durian seed gum with whey protein isolate significantly (p < 0.05) improved its foaming properties. In this study, the conjugated durian seed gum produced the most stable foam among all samples. On the other hand, the emulsion stabilized with the conjugated durian seed gum also showed more uniform particles with a larger specific surface area than the emulsion containing the non-conjugated durian seed gum. The conjugated durian seed gum showed significant different foaming properties, specific surface area, particle uniformity and water holding capacity (WHC) as compared to the target polysaccharide gums. The conjugated durian seed gum showed more similar functional properties to Arabic gum rather than other studied gums.
Abundance and distribution of aquatic insects respecting to several water chemical parameters from six rivers were studied in order to determine the performance of biological index in monitoring the water quality. A total of 960 individuals of aquatic insects from nine orders were recorded using kick and drag sampling techniques. Lubok Semilang had the greatest number of aquatic insects with 250 individuals, followed by Telaga Tujuh (181 individuals) and Sungai Durian Perangin (171 individuals). EPT (Ephemeroptera, Plecoptera and Trichoptera) order were the most dominant order recorded in all six rivers. Lata Kekabu had more diverse and richer aquatic insect assemblages based on ecological indices compared to the other five rivers. In order to evaluate the water quality of recreational rivers in Malaysia, Family Biotic Index (FBI), Malaysian Family Biotic Index (MFBI) and Biological Monitoring Working Party (BMWP) were used and compared with Water Quality Index (WQI) to determine the water quality at the study areas. Results demonstrated that the biotic indices were more sensitive towards changes in water parameters than the WQI. Among all the biological indices, MFBI was the most suitable index to be adopted in Malaysian river water assessment as it is more reliable in assessing the status of water quality.