MATERIALS AND METHODS: Therefore, based on current evidence and expert opinion, Malaysian expert panels from various disciplines have gathered to discuss the management of ESUS patients with PFO. This consensus sought to educate Malaysian healthcare professionals to diagnose and manage PFO in ESUS patients based on local resources and facilities.
RESULTS: Based on consensus, the Malaysian expert recommended PFO closure for embolic stroke patients who were younger than 60, had high RoPE scores and did not require long-term anticoagulation. However, the decision should be made after other mechanisms of stroke have been ruled out via thorough investigation and multidisciplinary evaluation. The PFO screening should be made using readily available imaging modalities, ideally contrasttransthoracic echocardiogram (c-TTE) or contrasttranscranial Doppler (c-TCD). The contrast-transesophageal echocardiogram (c-TEE) should be used for the confirmation of PFO diagnosis. The experts advised closing PFO as early as possible because there is limited evidence for late closure. For the post-closure follow-up management, dual antiplatelet therapy (DAPT) for one to three months, followed by single antiplatelet therapy (APT) for six months, is advised. Nonetheless, with joint care from a cardiologist and a neurologist, the multidisciplinary team will decide on the continuation of therapy.
OBJECTIVE: This systematic review aimed to investigate the available literature on the shared molecular mechanisms of neuroinflammation in AD and epilepsy.
METHODS: The search included in this systematic review was obtained from 5 established databases. A total of 2,760 articles were screened according to inclusion criteria. Articles related to the modulation of the inflammatory biomarkers commonly associated with the progression of AD and epilepsy in all populations were included in this review.
RESULTS: Only 7 articles met these criteria and were chosen for further analysis. Selected studies include both in vitro and in vivo research conducted on rodents. Several neuroinflammatory biomarkers were reported to be involved in the cross-talk between AD and epilepsy.
CONCLUSION: Neuroinflammation was directly associated with the advancement of AD and epilepsy in populations compared to those with either AD or epilepsy. However, more studies focusing on common inflammatory biomarkers are required to develop standardized monitoring guidelines to prevent the manifestation of epilepsy and delay the progression of AD in patients.
METHOD: This study included a total of 44 participants without subjective olfactory disturbances. Lavender and normal saline were used as the olfactory stimulant and control. Electroencephalogram was recorded and power spectra were analysed by the spectral analysis for each alpha, beta, delta, theta and gamma bandwidth frequency upon exposure to lavender and normal saline independently.
RESULTS: The oscillatory brain activities in response to the olfactory stimulant indicated that the lavender smell decreased the beta activity in the left frontal (F7 electrode) and central region (C3 electrode) with a reduction in the gamma activity in the right parietal region (P4 electrode) (p < 0.05).
CONCLUSION: Olfactory stimulants result in changes of electrical brain activities in different brain regions, as evidenced by the topographical brain map and spectra analysis of each brain wave.