Displaying publications 1 - 20 of 70 in total

  1. Khamaiseh EI, Abdul Hamid A, Abdeshahian P, Wan Yusoff WM, Kalil MS
    ScientificWorldJournal, 2014;2014:395754.
    PMID: 24672315 DOI: 10.1155/2014/395754
    The production of biobutanol was studied by the cultivation of Clostridium acetobutylicum NCIMB 13557 in P2 medium including date fruit as the sole substrate. The effect of P2 medium and the effect of different concentrations of date fruit ranging from 10 to 100 g/L on biobutanol production were investigated. Anaerobic batch culture was carried out at 35 °C incubation temperature and pH 7.0 ± 0.2 for 72 h. Experimental results showed that the lowest yield of biobutanol and acetone-butanol-ethanol (ABE) was 0.32 and 0.35 gram per gram of carbohydrate consumed (g/g), respectively, when an initial date fruit concentration of 10 g/L was utilized. At this fruit date concentration a biobutanol production value of 1.56 g/L was obtained. On the other hand, the maximum yield of biobutanol (0.48 g/g) and ABE (0.63 g/g) was produced at 50 g/L date fruit concentration with a biobutanol production value as high as 11 g/L. However, when a higher initial date fruit concentration was used, biobutanol and ABE production decreased to reach the yield of 0.22 g/g and 0.35 g/g, respectively, where 100 g/L date fruit was used. Similar results also revealed that 10.03 g/L biobutanol was produced using 100 g/L date fruit.
    Matched MeSH terms: Carbon/metabolism*
  2. Ibrahim MH, Jaafar HZ
    Molecules, 2011 Jun 29;16(7):5514-26.
    PMID: 21716173 DOI: 10.3390/molecules16075514
    Kacip Fatimah (Labisia pumila Blume), one of the most famous and widely used herbs, especially in Southeast Asia, is found to have interesting bioactive compounds and displays health promoting properties. In this study, the antioxidant activities of the methanol extracts of leaves, stems and roots of three varieties of L. pumila (var. alata, pumila and lanceolata) were evaluated in an effort to compare and validate the medicinal potential of this indigenous Malaysian herb species. The antioxidant activity determined by the 1,1-diphenyl-2-picrylhydrazyl (DPPH) assay, as well as the total amount of phenolics and flavonoids were the highest in the leaves, followed by the stems and roots in all the varieties. A similar trend was displayed by the ferric reducing antioxidant potential (FRAP) activity, suggesting that the L. pumila varieties possess high foliar antioxidant properties. At low FRAP activity concentrations, the values of the leaves' inhibition activity in the three varieties were significantly higher than those of the stems and roots, with var. alata exhibiting higher antioxidant activities and total contents of phenolics and flavonoids compared to the varieties pumila and lanceolata. The high production of secondary metabolites and antioxidant activities in var. alata were firmly related to low nitrogen content and high C/N ratio in plant parts. The study also demonstrated a positive correlation between secondary metabolite content and antioxidant activities, and revealed that the consumption of L. pumila could exert several beneficial effects by virtue of its antioxidant activity.
    Matched MeSH terms: Carbon/metabolism*
  3. Oh WD, Lim PE, Seng CE, Sujari AN
    Bioresour Technol, 2011 Oct;102(20):9497-502.
    PMID: 21871793 DOI: 10.1016/j.biortech.2011.07.107
    The objectives of this study are to obtain the time courses of the amount of chlorophenol adsorbed onto granular activated carbon (GAC) in the simultaneous adsorption and biodegradation processes involving 4-chlorophenol (4-CP) and 2,4-dichlorophenol (2,4-DCP), respectively, and to quantify the bioregeneration efficiency of GAC loaded with 4-CP and 2,4-DCP by direct measurement of the amount of chlorophenol adsorbed onto GAC. Under abiotic and biotic conditions, the time courses of the amount of chlorophenol adsorbed onto GAC at various GAC dosages for the initial 4-CP and 2,4-DCP concentrations below and above the biomass acclimated concentrations of 300 and 150 mg/L, respectively, were determined. The results show that the highest bioregeneration efficiency was achieved provided that the initial adsorbate concentration was lower than the acclimated concentration. When the initial adsorbate concentration was higher than the acclimated concentration, the highest bioregeneration efficiency was achieved if excess adsorbent was used.
    Matched MeSH terms: Carbon/metabolism*
  4. Mohammad Hood MH, Tengku Abdul Hamid TH, Abdul Wahab RA, Huyop FZ, Kaya Y, Abdul Hamid AAA
    J Biomol Struct Dyn, 2023 Apr;41(7):2831-2847.
    PMID: 35174777 DOI: 10.1080/07391102.2022.2039772
    Efficacy of a β-1,4-glucosidase from Trichoderma harzianum T12 (ThBglT12) in disrupting the cell wall of the phytopathogenic fungus M. phaseolina (Macrophomina phaseolina) was studied, as the underlying molecular mechanisms of cell wall recognition remains elusive. In this study, the binding location identified by a consensus of residues predicted by COACH tool, blind docking, and multiple sequence alignment revealed that molecular recognition by ThBglT12 occurred through interactions between the α-1,3-glucan, β-1,3-glucan, β-1,3/1,4-glucan, and chitin components of M. phaseolina, with corresponding binding energies of -7.4, -7.6, -7.5 and -7.8 kcal/mol. The residue consensus verified the participation of Glu172, Tyr304, Trp345, Glu373, Glu430, and Trp431 in the active site pocket of ThBglT12 to bind the ligands, of which Trp345 was the common interacting residue. Root mean square deviation (RMSD), root mean square fluctuation (RMSF), total energy, and minimum distance calculation from molecular dynamics (MD) simulation further confirmed the stability and the closeness of the binding ligands into the ThBglT12 active site pocket. The h-bond occupancy by Glu373 and Trp431 instated the role of the nucleophile for substrate recognition and specificity, crucial for cleaving the β-1,4 linkage. Further investigation showed that the proximity of Glu373 to the anomeric carbon of β-1,3/1,4-glucan (3.5 Å) and chitin (5.5 Å) indicates the nucleophiles' readiness to form enzyme-substrate intermediates. Plus, the neighboring water molecule appeared to be correctly positioned and oriented towards the anomeric carbon to hydrolyze the β-1,3/1,4-glucan and chitin, in less than 4.0 Å. In a nutshell, the study verified that the ThBglT12 is a good alternative fungicide to inhibit the growth of M. phaseolina.Communicated by Ramaswamy H. Sarma.
    Matched MeSH terms: Carbon/metabolism
  5. Ma H, Crowther TW, Mo L, Maynard DS, Renner SS, van den Hoogen J, et al.
    Nat Plants, 2023 Nov;9(11):1795-1809.
    PMID: 37872262 DOI: 10.1038/s41477-023-01543-5
    Understanding what controls global leaf type variation in trees is crucial for comprehending their role in terrestrial ecosystems, including carbon, water and nutrient dynamics. Yet our understanding of the factors influencing forest leaf types remains incomplete, leaving us uncertain about the global proportions of needle-leaved, broadleaved, evergreen and deciduous trees. To address these gaps, we conducted a global, ground-sourced assessment of forest leaf-type variation by integrating forest inventory data with comprehensive leaf form (broadleaf vs needle-leaf) and habit (evergreen vs deciduous) records. We found that global variation in leaf habit is primarily driven by isothermality and soil characteristics, while leaf form is predominantly driven by temperature. Given these relationships, we estimate that 38% of global tree individuals are needle-leaved evergreen, 29% are broadleaved evergreen, 27% are broadleaved deciduous and 5% are needle-leaved deciduous. The aboveground biomass distribution among these tree types is approximately 21% (126.4 Gt), 54% (335.7 Gt), 22% (136.2 Gt) and 3% (18.7 Gt), respectively. We further project that, depending on future emissions pathways, 17-34% of forested areas will experience climate conditions by the end of the century that currently support a different forest type, highlighting the intensification of climatic stress on existing forests. By quantifying the distribution of tree leaf types and their corresponding biomass, and identifying regions where climate change will exert greatest pressure on current leaf types, our results can help improve predictions of future terrestrial ecosystem functioning and carbon cycling.
    Matched MeSH terms: Carbon/metabolism
  6. Mienda BS
    J Biomol Struct Dyn, 2017 Jul;35(9):1863-1873.
    PMID: 27251747 DOI: 10.1080/07391102.2016.1197153
    Genome-scale metabolic models (GEMs) have been developed and used in guiding systems' metabolic engineering strategies for strain design and development. This strategy has been used in fermentative production of bio-based industrial chemicals and fuels from alternative carbon sources. However, computer-aided hypotheses building using established algorithms and software platforms for biological discovery can be integrated into the pipeline for strain design strategy to create superior strains of microorganisms for targeted biosynthetic goals. Here, I described an integrated workflow strategy using GEMs for strain design and biological discovery. Specific case studies of strain design and biological discovery using Escherichia coli genome-scale model are presented and discussed. The integrated workflow presented herein, when applied carefully would help guide future design strategies for high-performance microbial strains that have existing and forthcoming genome-scale metabolic models.
    Matched MeSH terms: Carbon/metabolism
  7. Mohamad SN, Ramanan RN, Mohamad R, Ariff AB
    N Biotechnol, 2011 Feb 28;28(2):146-52.
    PMID: 20970530 DOI: 10.1016/j.nbt.2010.10.008
    The effect of different carbon and nitrogen sources on the production of mannan-degrading enzymes, focussing on β-mannanase, by Aspergillus niger was investigated using shake flask culture. The β-mannanase activity obtained during growth of A. niger on guar gum (GG, 1495 nkat mL(-1)) was much higher than those observed on other carbon substrates, locust bean gum (1148 nkat mL(-1)), α-cellulose (10.7 nkat mL(-1)), glucose (8.8 nkat mL(-1)) and carboxymethylcellulose (4.6 nkat mL(-1)). For fermentation using GG as a carbon source, bacteriological peptone gave the highest β-mannanase activity (1744 nkat mL(-1)) followed by peptone from meat (1168 nkat mL(-1)), yeast extract (817 nkat mL(-1)), ammonium sulphate (241 nkat mL(-1)), ammonium nitrate (113 nkat mL(-1)) and ammonium chloride (99 nkat mL(-1)) when used as a nitrogen source. The composition of bacteriological peptone and initial pH of the medium were further optimized using response surface methodology (RSM). Medium consisted of 21.3 g L(-1) GG and 57 g L(-1) peptone with initial culture pH of 5.5 was optimum for β-mannanase production (2063 nkat mL(-1)) by A. niger. The β-mannanase production obtained in this study using A. niger was significantly higher than those reported in the literature.
    Matched MeSH terms: Carbon/metabolism
  8. Imai N, Samejima H, Langner A, Ong RC, Kita S, Titin J, et al.
    PLoS One, 2009;4(12):e8267.
    PMID: 20011516 DOI: 10.1371/journal.pone.0008267
    Sustainable forest management (SFM), which has been recently introduced to tropical natural production forests, is beneficial in maintaining timber resources, but information about the co-benefits for biodiversity conservation and carbon sequestration is currently lacking.
    Matched MeSH terms: Carbon/metabolism*
  9. Nittami T, Mukai M, Uematsu K, Yoon LW, Schroeder S, Chua ASM, et al.
    Appl Microbiol Biotechnol, 2017 Dec;101(23-24):8607-8619.
    PMID: 29063174 DOI: 10.1007/s00253-017-8571-3
    Previous studies have shown that enhanced biological phosphorus removal (EBPR) performance under continuous aerobic conditions always eventually deteriorates; however, the speed at which this happens depends on the carbon source supplied. The published data suggest that propionate is a better carbon source than acetate is for maintaining operational stability, although it is not clear why. A lab-scale sequencing batch reactor was run initially under conventional anaerobic/aerobic conditions with either acetate or propionate as the carbon source. Chemical and microbiological analyses revealed that both sources performed as expected for such systems. When continuous aerobic conditions were imposed on both these established communities, marked shifts of the "Candidatus Accumulibacter" clades were recorded for both carbon sources. Here, we discuss whether this shift could explain the prolonged EBPR stability observed with propionate.
    Matched MeSH terms: Carbon/metabolism*
  10. Chew SY, Chee WJY, Than LTL
    J Biomed Sci, 2019 Jul 13;26(1):52.
    PMID: 31301737 DOI: 10.1186/s12929-019-0546-5
    BACKGROUND: Carbon utilization and metabolism are fundamental to every living organism for cellular growth. For intracellular human fungal pathogens such as Candida glabrata, an effective metabolic adaptation strategy is often required for survival and pathogenesis. As one of the host defence strategies to combat invading pathogens, phagocytes such as macrophages constantly impose restrictions on pathogens' access to their preferred carbon source, glucose. Surprisingly, it has been reported that engulfed C. glabrata are able to survive in this harsh microenvironment, further suggesting alternative carbon metabolism as a potential strategy for this opportunistic fungal pathogen to persist in the host.

    MAIN TEXT: In this review, we discuss alternative carbon metabolism as a metabolic adaptation strategy for the pathogenesis of C. glabrata. As the glyoxylate cycle is an important pathway in the utilization of alternative carbon sources, we also highlight the key metabolic enzymes in the glyoxylate cycle and its necessity for the pathogenesis of C. glabrata. Finally, we explore the transcriptional regulatory network of the glyoxylate cycle.

    CONCLUSION: Considering evidence from Candida albicans and Saccharomyces cerevisiae, this review summarizes the current knowledge of the glyoxylate cycle as an alternative carbon metabolic pathway of C. glabrata.

    Matched MeSH terms: Carbon/metabolism*
  11. Roumet C, Birouste M, Picon-Cochard C, Ghestem M, Osman N, Vrignon-Brenas S, et al.
    New Phytol, 2016 May;210(3):815-26.
    PMID: 26765311 DOI: 10.1111/nph.13828
    Although fine roots are important components of the global carbon cycle, there is limited understanding of root structure-function relationships among species. We determined whether root respiration rate and decomposability, two key processes driving carbon cycling but always studied separately, varied with root morphological and chemical traits, in a coordinated way that would demonstrate the existence of a root economics spectrum (RES). Twelve traits were measured on fine roots (diameter ≤ 2 mm) of 74 species (31 graminoids and 43 herbaceous and dwarf shrub eudicots) collected in three biomes. The findings of this study support the existence of a RES representing an axis of trait variation in which root respiration was positively correlated to nitrogen concentration and specific root length and negatively correlated to the root dry matter content, lignin : nitrogen ratio and the remaining mass after decomposition. This pattern of traits was highly consistent within graminoids but less consistent within eudicots, as a result of an uncoupling between decomposability and morphology, and of heterogeneity of individual roots of eudicots within the fine-root pool. The positive relationship found between root respiration and decomposability is essential for a better understanding of vegetation-soil feedbacks and for improving terrestrial biosphere models predicting the consequences of plant community changes for carbon cycling.
    Matched MeSH terms: Carbon/metabolism*
  12. Zin KM, Effendi Halmi MI, Abd Gani SS, Zaidan UH, Samsuri AW, Abd Shukor MY
    Biomed Res Int, 2020;2020:2734135.
    PMID: 32149095 DOI: 10.1155/2020/2734135
    The release of wastewater from textile dyeing industrial sectors is a huge concern with regard to pollution as the treatment of these waters is truly a challenging process. Hence, this study investigates the triazo bond Direct Blue 71 (DB71) dye decolorization and degradation dye by a mixed bacterial culture in the deficiency source of carbon and nitrogen. The metagenomics analysis found that the microbial community consists of a major bacterial group of Acinetobacter (30%), Comamonas (11%), Aeromonadaceae (10%), Pseudomonas (10%), Flavobacterium (8%), Porphyromonadaceae (6%), and Enterobacteriaceae (4%). The richest phylum includes Proteobacteria (78.61%), followed by Bacteroidetes (14.48%) and Firmicutes (3.08%). The decolorization process optimization was effectively done by using response surface methodology (RSM) and artificial neural network (ANN). The experimental variables of dye concentration, yeast extract, and pH show a significant effect on DB71 dye decolorization percentage. Over a comparative scale, the ANN model has higher prediction and accuracy in the fitness compared to the RSM model proven by approximated R2 and AAD values. The results acquired signify an efficient decolorization of DB71 dye by a mixed bacterial culture.
    Matched MeSH terms: Carbon/metabolism
  13. Kiyasudeen K, Ibrahim MH, Muhammad SA, Ismail SA, Gonawan FN, Zuknik MH
    Environ Sci Pollut Res Int, 2018 Nov;25(31):31062-31070.
    PMID: 30187407 DOI: 10.1007/s11356-018-3074-z
    Earthworms are commonly referred as environmental engineers and their guts are often compared with chemical reactors. However, modeling experiments to substantiate it are lacking. The aim of this study was to use established reactor models, particularly PFR, on the gut of the vermicomposting earthworm Eudrilus eugeniae to understand more on its digestion. To achieve the objective, a mathematical model based on first-order kinetics was framed and used to determine the pattern of digestion rates of nutrient indicators, namely total carbon (%), total nitrogen (%), C/N ratio, 13C (‰), and 15N (‰) at five intersections (pre-intestine, foregut, midgut A, midgut B, and hindgut) along the gut of E. eugeniae. The experimental results revealed that the concentrations of TC, TN, 13C, and 15N decreased during gut transit, whereas C/N ratio increased. The first-order model demonstrated that all the nutrients exhibit a linear pattern of digestion during gut transit, which supports the PFR model. On this basis, the present study concludes that the gut of E. eugeniae functions as PFR.
    Matched MeSH terms: Carbon/metabolism
  14. Lim JW, Lim PE, Seng CE, Adnan R
    Environ Sci Pollut Res Int, 2014 Jan;21(1):485-94.
    PMID: 23807562 DOI: 10.1007/s11356-013-1933-1
    The feasibility of using dried attached-growth biomass from the polyurethane (PU) foam cubes as a solid carbon source to enhance the denitrification process in the intermittently aerated moving bed sequencing batch reactor (IA-MBSBR) during the treatment of low COD/N containing wastewater was investigated. By packing the IA-MBSBR with 8% (v/v) of 8-mL PU foam cubes saturated with dried attached-growth biomass, total nitrogen removal efficiency of 80% could be achieved for 10 consecutive cycles of operation when the intermittent aeration strategy of consecutive 1 h of aeration followed by 2 h of non-aeration period during the REACT period of the IA-MBSBR was adopted. Negligible release of ammonium nitrogen (NH4(+)-N) and slow-release of COD from the dried biomass would ensure that the use of this solid carbon source would not further burden the treatment system. The slow-releasing COD was found to have no effect in promoting the assimilation process and would also allow the carbon source to be used for many cycles of operation. The 'carbon-spent' PU foam cubes could be reused by merely drying at 60 °C at the end of the operational mode. Thus, the dried attached-growth biomass formed on the PU foam cubes could be exploited as an alternative solid carbon source for the enhancement of denitrification process in the IA-MBSBR.
    Matched MeSH terms: Carbon/metabolism*
  15. Chew SY, Brown AJP, Lau BYC, Cheah YK, Ho KL, Sandai D, et al.
    J Biomed Sci, 2021 Jan 02;28(1):1.
    PMID: 33388061 DOI: 10.1186/s12929-020-00700-8
    BACKGROUND: Emergence of Candida glabrata, which causes potential life-threatening invasive candidiasis, has been widely associated with high morbidity and mortality. In order to cause disease in vivo, a robust and highly efficient metabolic adaptation is crucial for the survival of this fungal pathogen in human host. In fact, reprogramming of the carbon metabolism is believed to be indispensable for phagocytosed C. glabrata within glucose deprivation condition during infection.

    METHODS: In this study, the metabolic responses of C. glabrata under acetate growth condition was explored using high-throughput transcriptomic and proteomic approaches.

    RESULTS: Collectively, a total of 1482 transcripts (26.96%) and 242 proteins (24.69%) were significantly up- or down-regulated. Both transcriptome and proteome data revealed that the regulation of alternative carbon metabolism in C. glabrata resembled other fungal pathogens such as Candida albicans and Cryptococcus neoformans, with up-regulation of many proteins and transcripts from the glyoxylate cycle and gluconeogenesis, namely isocitrate lyase (ICL1), malate synthase (MLS1), phosphoenolpyruvate carboxykinase (PCK1) and fructose 1,6-biphosphatase (FBP1). In the absence of glucose, C. glabrata shifted its metabolism from glucose catabolism to anabolism of glucose intermediates from the available carbon source. This observation essentially suggests that the glyoxylate cycle and gluconeogenesis are potentially critical for the survival of phagocytosed C. glabrata within the glucose-deficient macrophages.

    CONCLUSION: Here, we presented the first global metabolic responses of C. glabrata to alternative carbon source using transcriptomic and proteomic approaches. These findings implicated that reprogramming of the alternative carbon metabolism during glucose deprivation could enhance the survival and persistence of C. glabrata within the host.

    Matched MeSH terms: Carbon/metabolism*
  16. Tomimatsu H, Iio A, Adachi M, Saw LG, Fletcher C, Tang Y
    Tree Physiol, 2014 Sep;34(9):944-54.
    PMID: 25187569 DOI: 10.1093/treephys/tpu066
    Understory plants in tropical forests often experience a low-light environment combined with high CO2 concentration. We hypothesized that the high CO2 concentration may compensate for leaf carbon loss caused by the low light, through increasing light-use efficiency of both steady-state and dynamic photosynthetic properties. To test the hypothesis, we examined CO2 gas exchange in response to an artificial lightfleck in Dipterocarpus sublamellatus Foxw. seedlings under contrasting CO2 conditions: 350 and 700 μmol CO2 mol(-1) air in a tropical rain forest, Pasoh, Malaysia. Total photosynthetic carbon gain from the lightfleck was about double when subjected to the high CO2 when compared with the low CO2 concentration. The increase of light-use efficiency in dynamic photosynthesis contributed 7% of the increased carbon gain, most of which was due to reduction of photosynthetic induction to light increase under the high CO2. The light compensation point of photosynthesis decreased by 58% and the apparent quantum yield increased by 26% at the high CO2 compared with those at the low CO2. The study suggests that high CO2 increases photosynthetic light-use efficiency under both steady-state and fluctuating light conditions, which should be considered in assessing the leaf carbon gain of understory plants in low-light environments.
    Matched MeSH terms: Carbon/metabolism*
  17. Huu Phong T, Van Thuoc D, Sudesh K
    Int J Biol Macromol, 2016 Mar;84:361-6.
    PMID: 26708435 DOI: 10.1016/j.ijbiomac.2015.12.037
    A halophilic bacterium isolated from mangrove soil sample in Northern Vietnam, Yangia sp. ND199 was found capable of producing homopolymer poly(3-hydroxybutyrate) [P(3HB)], copolymer poly(3-hydroxybutyrate-co-3-hydroxyvalerate) [P(3HB-co-3HV)], and copolymer poly(3-hydroxybutyrate-co-4-hydroxybutyrate) [P(3HB-co-4HB)] from different carbon sources. The presence of 3HB, 3HV, and 4HB monomers were confirmed by gas chromatography and nuclear magnetic resonance analysis. Only P(3HB) was produced using carbon sources such as fructose or by a combination of fructose with 1,5-pentanediol, 1,6-hexanediol, sodium hexanoate, or sodium octanoate. The biosynthesis of P(3HB-co-3HV) was achieved by adding cosubstrates such as sodium valerate and sodium heptanoate. When 1,4-butanediol, γ-butyrolactone or sodium 4-hydroxybutyrate was added to the culture medium, P(3HB-co-4HB) containing 4.0-7.1mol% 4HB fraction was accumulated. The molecular weights and thermal properties of polyesters were determined by gel permeation chromatography and differential scanning calorimeter, respectively. The results showed that Yangia sp. ND199 is able to produce polyester with high weight average molecular weight ranging from 1.3×10(6) to 2.2×10(6) Dalton and number average molecular weight ranging from 4.2×10(5) to 6.9×10(5) Dalton. The molecular weights, glass transition temperature as well as melting temperature of homopolymer P(3HB) are higher than those of copolymer P(3HB-co-3HV) or P(3HB-co-4HB).
    Matched MeSH terms: Carbon/metabolism*
  18. Suthandiram S, Gan GG, Mohd Zain S, Bee PC, Lian LH, Chang KM, et al.
    Tumour Biol., 2015 Mar;36(3):1819-34.
    PMID: 25384508 DOI: 10.1007/s13277-014-2785-0
    Corroborating evidence related to the role of aberrations on one-carbon metabolism (OCM) genes has been inconsistent. We evaluated the association between polymorphisms in 12 single nucleotide polymorphisms (SNPs) in 8 OCM genes (CBS, FPGS, FTHFD, MTRR, SHMT1, SLC19A1, TCN1, and TYMS), and non-Hodgkin lymphoma (NHL) risk in a multi-ethnic population which includes Malay, Chinese and Indian ethnic subgroups. Cases (N = 372) and controls (N = 722) were genotyped using the Sequenom MassARRAY platform. Our results of the pooled subjects showed a significantly enhanced NHL risk for CBS Ex9 + 33C > T (T versus C: OR 1.55, 95% CI 1.22-1.96, P = 0.0003), CBS Ex18-319G > A (A versus G: OR 1.15, 95% CI 1.14-1.83; P = 0.002), SHMT1 Ex12 + 236 T > C (T versus C: OR 1.44, 95% CI 1.15-1.81, P = 0.002), and TYMS Ex8 + 157C > T (T versus C: OR 1.29, 95% CI 1.06-1.57, P = 0.01). Haplotype analysis for CBS SNPs showed a significantly decreased risk of NHL in subjects with haplotype CG (OR 0.69, 95% CI 0.56-0.86, P = <0.001). The GG haplotype for the FTHFD SNPs showed a significant increased risk of NHL (OR 1.40, 95% CI 1.12-1.76, P = 0.002). For the TYMS gene, haplotype CAT at TYMS (OR 0.67, 95% CI 0.49-0.90, P = 0.007) was associated with decreased risk of NHL, while haplotype TAC (OR 1.29, 95% CI 1.05-1.58, P = 0.01) was found to confer increased risk of NHL. Our study suggests that variation in several OCM genes (CBS, FTHFD, SHMT1, TCN1, and TYMS) may influence susceptibility to NHL.
    Matched MeSH terms: Carbon/metabolism*
  19. Samadlouie HR, Hamidi-Esfahani Z, Alavi SM, Varastegani B
    Braz J Microbiol, 2014;45(2):439-45.
    PMID: 25242926
    The time courses for production of fungal biomass, lipid, phenolic and arachidonic acid (ARA) as well as expression of the genes involved in biosynthesis of ARA and lipid were examined in Mortierella alpina CBS 754.68. A significant increase in the arachidonic acid content in lipids that coincided with reduced levels of lipid was obtained. Reduced gene expression occurred presumably due to the steady reduction of carbon and nitrogen resources. However, these energy resources were inefficiently compensated by the breakdown of the accumulated lipids that in turn, induced up-regulated expression of the candidate genes. The results further indicated that the expression of the GLELO encoding gene is a rate-limiting step in the biosynthesis of ARA in the early growth phase.
    Matched MeSH terms: Carbon/metabolism
  20. Gumel AM, Annuar MS, Heidelberg T
    Braz J Microbiol, 2014;45(2):427-38.
    PMID: 25242925
    Growth associated biosynthesis of medium chain length poly-3-hydroxyalkanoates (mcl-PHA) in Pseudomonas putida Bet001 isolated from palm oil mill effluent was studied. Models with substrate inhibition terms described well the kinetics of its growth. Selected fatty acids (C8:0 to C18:1) and ammonium were used as carbon and nitrogen sources during growth and PHA biosynthesis, resulting in PHA accumulation of about 50 to 69% (w/w) and PHA yields ranging from 10.12 g L(-1) to 15.45 g L(-1), respectively. The monomer composition of the PHA ranges from C4 to C14, and was strongly influenced by the type of carbon substrate fed. Interestingly, an odd carbon chain length (C7) monomer was also detected when C18:1 was fed. Polymer showed melting temperature (T m) of 42.0 (± 0.2) °C, glass transition temperature (T g) of -1.0 (± 0.2) °C and endothermic melting enthalpy of fusion (ΔHf) of 110.3 (± 0.1) J g(-1). The molecular weight (M w) range of the polymer was relatively narrow between 55 to 77 kDa.
    Matched MeSH terms: Carbon/metabolism*
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links