RESEARCH QUESTION: The differential impact of frequently used CSs and their regimens on long-term (> 5 years) cardiorespiratory progression in children with DMD is unknown.
STUDY DESIGN AND METHODS: This was a retrospective longitudinal study including children with DMD followed at Dubowitz Neuromuscular Centre, Great Ormond Street Hospital London, England, from May 2000 to June 2017. Patients enrolled in any interventional clinical trials were excluded. We collected patients' anthropometrics and respiratory (FVC, FVC % predicted and absolute FVC, and noninvasive ventilation requirement [NIV]) and cardiac (left ventricular shortening function [LVFS%]) function. CSs-naïve patients had never received CSs. Patients who were treated with CSs took either deflazacort or prednisolone, daily or intermittently (10 days on/10 days off) for > 1 month. Average longitudinal models were fitted for yearly respiratory (FVC % predicted) and cardiac (LVFS%) progression. A time-to-event analysis to FVC % predicted < 50%, NIV start, and cardiomyopathy (LVFS% < 28%) was performed in CS-treated (daily and intermittent) vs CS-naïve patients.
RESULTS: There were 270 patients, with a mean age at baseline of 6.2 ± 2.3 years. The median follow-up time was 5.6 ± 3.5 years. At baseline, 263 patients were ambulant. Sixty-six patients were treated with CSs daily, 182 patients underwent CSs intermittent > 60% treatment, and 22 were CS-naïve patients. Yearly FVC % predicted declined similarly from 9 years (5.9% and 6.9% per year, respectively; P = .27) in the CSs-daily and CSs-intermittent groups. The CSs-daily group declined from a higher FVC % predicted than the CSs-intermittent group (P < .05), and both reached FVC % predicted < 50% and NIV requirement at a similar age, > 2 years later than the CS-naïve group. LVFS% declined by 0.53% per year in the CSs-treated group irrespective of the CSs regimen, significantly slower (P < .01) than the CSs-naïve group progressing by 1.17% per year. The age at cardiomyopathy was 16.6 years in the CSs-treated group (P < .05) irrespective of regimen and 13.9 years in the CSs-naïve group.
INTERPRETATION: CSs irrespective of the regimen significantly improved respiratory function and delayed NIV requirement and cardiomyopathy.
Methods: Twenty-seven patients with history of anterior myocardial infarction (MI) and baseline left ventricular ejection fraction (LVEF) of less than 35% were recruited into this study. Patients who are eligible for revascularization were grouped into group A (MSCs infusion with concurrent revascularization) or group B (revascularization only) while patients who were not eligible for revascularization were allocated in group C to receive intracoronary MSCs infusion. LV function was measured using echocardiography.
Results: Patients who received MSCs infusion (either with or without revascularization) demonstrated significant LVEF improvements at 3, 6 and 12 months post-infusion when compared to baseline LVEF within its own group. When comparing the groups, the magnitude of change in LVEF from baseline for third visits i.e., 12 months post-infusion was significant for patients who received MSCs infusion plus concurrent revascularization in comparison to patients who only had the revascularization procedure.
Conclusions: MSCs infusion significantly improves LV function in ICM patients. MSCs infusion plus concurrent revascularization procedure worked synergistically to improve cardiac function in patients with severe ICM.
METHODS: Patients receiving cancer-related treatment regimes underwent screening of cardiac involvement with CMR, either within 3 months (early Tx) or >12 months (late Tx) post-treatment. T1 and T2 mapping, cardiac function, strain, ischaemia-testing, scar-imaging and serological cardiac biomarkers were obtained.
RESULTS: Compared to age/gender matched controls (n = 57), patients (n = 115, age (yrs): median(IQR) 48(28-60), females, n = 60(52%) had reduced left ventricular ejection fraction (LV-EF) and strain, and higher native T1 and T2. The early Tx group (n = 52) had significantly higher native T1, T2 and troponin levels compared to the late Tx group, indicating myocardial inflammation and oedema (p