Displaying publications 1 - 20 of 153 in total

Abstract:
Sort:
  1. Wong KH, Naidu M, David P, Abdulla MA, Abdullah N, Kuppusamy UR, et al.
    PMID: 30643540 DOI: 10.1155/2018/9820769
    [This corrects the article DOI: 10.1093/ecam/neq062.].
    Matched MeSH terms: Epithelial Cell Adhesion Molecule
  2. Mohtar MA, Syafruddin SE, Nasir SN, Low TY
    Biomolecules, 2020 02 07;10(2).
    PMID: 32046162 DOI: 10.3390/biom10020255
    Epithelial cell adhesion molecule (EpCAM) is a cell surface protein that was discovered as a tumour marker of epithelial origins nearly four decades ago. EpCAM is expressed at basal levels in the basolateral membrane of normal epithelial cells. However, EpCAM expression is upregulated in solid epithelial cancers and stem cells. EpCAM can also be found in disseminated tumour cells and circulating tumour cells. Various OMICs studies have demonstrated that EpCAM plays roles in several key biological processes such as cell adhesion, migration, proliferation and differentiation. Additionally, EpCAM can be detected in the bodily fluid of cancer patients suggesting that EpCAM is a pathophysiologically relevant anti-tumour target as well as being utilized as a diagnostic/prognostic agent for a variety of cancers. This review will focus on the structure-features of EpCAM protein and discuss recent evidence on the pathological and physiological roles of EpCAM in modulating cell adhesion and signalling pathways in cancers as well as deliberating the clinical implication of EpCAM as a therapeutic target.
    Matched MeSH terms: Cell Adhesion/physiology; Cell Adhesion Molecules; Epithelial Cell Adhesion Molecule/metabolism*; Epithelial Cell Adhesion Molecule/physiology*
  3. Saifful Kamaluddin Muzakir, Shahidan Radiman
    Sains Malaysiana, 2011;40:1123-1127.
    Nanozarah zink oksida telah disintesis menggunakan afrons gas koloid sebagai acuan. Zink sulfat (ZnSO4.7H2O) dan gas ammonia digunakan sebagi bahan tindak balas. Masa pengeraman yang dikaji adalah 2 jam dan 18 jam. Daripada analisis mikroskop elektron imbasan, morfologi nanohelaian dapat diperhatikan dengan ketebalan helaian 125 nm hingga 200 nm. Daripada analisis spektroskopi ultra lembayung-boleh nampak, saiz purata yang dianggarkan bagi sampel nanozarah zink oksida yang disintesis dengan masa pengeraman 2 jam adalah 2.03 nm dan 2.1 nm untuk sampel yang dieramkan selama 18 jam.
    Matched MeSH terms: Cell Adhesion Molecules
  4. Tukimat Lihan, Nur Fatin Khodri, Muzzneena Ahmad Mustapha, Zulfahmi Ali Rahman, Wan Mohd Razi Idris
    Sains Malaysiana, 2018;47:2241-2249.
    Aktiviti guna tanah di kawasan lembangan adalah salah satu faktor yang mendorong kepada kemerosotan kualiti air
    sungai akibat daripada hakisan tanih. Potensi hakisan tanih di kawasan lembangan Sungai Bilut, Raub, Pahang yang
    menjadi sumber bekalan air minuman utama di daerah Raub boleh ditentukan dengan menggunakan integrasi model
    Semakan Semula Persamaan Kehilangan Tanih Universal (RUSLE) dan Sistem Maklumat Geografi (GIS). Kajian ini
    bertujuan untuk menentukan potensi hakisan tanih dan faktor utama yang mempengaruhi kadar hakisan tanih. Kajian ini
    melibatkan penggunaan data sekunder yang terdiri daripada data hujan, data siri tanih dan topografi bagi menghasilkan
    faktor kehakisan hujan (R), kebolehhakisan tanih (K), serta panjang dan kecuraman cerun (LS). Faktor litupan tumbuhan
    (C) dan amalan pemuliharaan (P) pula dijana daripada imej satelit Landsat 8 (2014). Keputusan kajian menunjukkan
    nilai faktor R di kawasan kajian ialah 8927.68-9775.18 MJ mm ha-1 jam-1 tahun-1, nilai K ialah 0.036-0.500 tan jam-1
    MJ-1 mm-1, nilai LS ialah 0-514, nilai C ialah 0.03-0.80 dan nilai P ialah 0.1-0.7. Kawasan yang mempunyai potensi
    hakisan sangat rendah hingga rendah meliputi 81%, manakala potensi hakisan tanih sederhana hingga sangat tinggi
    meliputi 19% daripada keseluruhan kawasan kajian. Model yang dihasilkan mempunyai ketepatan sebanyak 81%. Faktor
    utama yang mempengaruhi berlakunya hakisan tanih di kawasan kajian adalah faktor topografi, litupan tumbuhan dan
    kebolehhakisan tanih. Keputusan menunjukkan analisis integrasi RUSLE dan GIS berpotensi dalam penentuan potensi
    hakisan tanih untuk kawasan luas yang mempunyai pelbagai jenis guna tanah, topografi dan jenis tanih.
    Matched MeSH terms: Cell Adhesion Molecules
  5. Tong CY, Lim SL, Chua MX, Derek CJC
    Bioengineered, 2023 Dec;14(1):2252213.
    PMID: 37695682 DOI: 10.1080/21655979.2023.2252213
    Spontaneous natural biofilm concentrates microalgal biomass on solid supports. However, the biofilm is frequently susceptible to exfoliation upon nutrient deficiency, particularly found in aged biofilm. Therefore, this study highlights a novel biofilm cultivation technique by pre-depositing the algal organic matters from marine diatom, Navicula incerta onto microporous polyvinylidene fluoride membrane to further strengthen the biofilm developed. Due to the improvement in membrane surface roughness and hydrophobicity, cells adhered most abundantly to soluble extrapolymeric substances-coated (sEPS) (76×106±16×106 cells m-2), followed by bounded EPS-coated (57.67×106±0.33×106 cells m-2), internally organic matter (IOM)-coated (39.00×106±5.19×106 cells m-2), and pristine control the least (6.22×106±0.77×106 cells m-2) at 24th h. Surprisingly, only bEPS-coated membrane demonstrated an increase in cell adhesion toward the end of the experiment at 72 h. The application of the bio-coating has successfully increased the rate of cell attachment by at least 45.3% upon inoculation and achieved as high as 89.9% faster attachment at 72 hours compared to the pristine control group. Soluble polysaccharides and proteins might be carried along by the cells adhering onto membranes hence resulting in a built up of EPS hydrophobicity (>70% in average on bio-coated membranes) over time as compared with pristine (control) that only recorded an average of approximately 50% hydrophobicity. Interestingly, cells grown on bio-coated membranes accumulated more internally bounded polysaccharides, though bio-coating had no discernible impact on the production of both externally and internally bounded protein. The collective findings of this study reveal the physiological alterations of microalgal biofilms cultured on bio-coated membranes.
    Matched MeSH terms: Cell Adhesion
  6. Chai WL, Brook IM, Palmquist A, van Noort R, Moharamzadeh K
    J R Soc Interface, 2012 Dec 7;9(77):3528-38.
    PMID: 22915635 DOI: 10.1098/rsif.2012.0507
    For dental implants, it is vital that an initial soft tissue seal is achieved as this helps to stabilize and preserve the peri-implant tissues during the restorative stages following placement. The study of the implant-soft tissue interface is usually undertaken in animal models. We have developed an in vitro three-dimensional tissue-engineered oral mucosal model (3D OMM), which lends itself to the study of the implant-soft tissue interface as it has been shown that cells from the three-dimensional OMM attach onto titanium (Ti) surfaces forming a biological seal (BS). This study compares the quality of the BS achieved using the three-dimensional OMM for four types of Ti surfaces: polished, machined, sandblasted and anodized (TiUnite). The BS was evaluated quantitatively by permeability and cell attachment tests. Tritiated water (HTO) was used as the tracing agent for the permeability test. At the end of the permeability test, the Ti discs were removed from the three-dimensional OMM and an Alamar Blue assay was used for the measurement of residual cells attached to the Ti discs. The penetration of the HTO through the BS for the four types of Ti surfaces was not significantly different, and there was no significant difference in the viability of residual cells that attached to the Ti surfaces. The BS of the tissue-engineered oral mucosa around the four types of Ti surface topographies was not significantly different.
    Matched MeSH terms: Cell Adhesion*
  7. Lim KJ
    Malays J Pathol, 2003 Jun;25(1):1-13.
    PMID: 16196373
    Successful human reproduction remains an enigma, but this is slowly changing in the current era of expanding scientific knowledge. The discovery of various molecular factors such as adhesion molecules, proteases and cytokines have in recent years been at the forefront of medical research. The growing importance of immunology in particular has led to novel new immuno-modulatory therapies and increasing research into this new aspect of reproductive immunology may well prove to be the most important breakthrough in understanding the fundamentals of human reproduction. Implantation represents the first step in the complex interactions and processes involved in foetal-maternal interaction, which continues throughout pregnancy gestation and culminates in the birth of an infant. It is therefore vital that we understand the myriad processes controlling implantation in order to build a firm foundation for exploring reproductive immunology research in the new millennium. This review brings together and presents an overview of the potential roles of currently known molecular factors such as adhesion molecules, proteases, cytokines and its interaction with the maternal immune response, incorporating the findings of previous published research performed by the author on cytokines and reproductive immunology.
    Matched MeSH terms: Cell Adhesion Molecules/metabolism*
  8. Dashtdar H, Murali MR, Selvaratnam L, Balaji Raghavendran H, Suhaeb AM, Ahmad TS, et al.
    PeerJ, 2016;4:e1650.
    PMID: 26966647 DOI: 10.7717/peerj.1650
    Chondrogenic differentiation of mesenchymal stromal cells (MSCs) in the form of pellet culture and encapsulation in alginate beads has been widely used as conventional model for in vitro chondrogenesis. However, comparative characterization between differentiation, hypertrophic markers, cell adhesion molecule and ultrastructural changes during alginate and pellet culture has not been described. Hence, the present study was conducted comparing MSCs cultured in pellet and alginate beads with monolayer culture. qPCR was performed to assess the expression of chondrogenic, hypertrophic, and cell adhesion molecule genes, whereas transmission electron microscopy (TEM) was used to assess the ultrastructural changes. In addition, immunocytochemistry for Collagen type II and aggrecan and glycosaminoglycan (GAG) analysis were performed. Our results indicate that pellet and alginate bead cultures were necessary for chondrogenic differentiation of MSC. It also indicates that cultures using alginate bead demonstrated significantly higher (p < 0.05) chondrogenic but lower hypertrophic (p < 0.05) gene expressions as compared with pellet cultures. N-cadherin and N-CAM1 expression were up-regulated in second and third weeks of culture and were comparable between the alginate bead and pellet culture groups, respectively. TEM images demonstrated ultrastructural changes resembling cell death in pellet cultures. Our results indicate that using alginate beads, MSCs express higher chondrogenic but lower hypertrophic gene expression. Enhanced production of extracellular matrix and cell adhesion molecules was also observed in this group. These findings suggest that alginate bead culture may serve as a superior chondrogenic model, whereas pellet culture is more appropriate as a hypertrophic model of chondrogenesis.
    Matched MeSH terms: Cell Adhesion; Cell Adhesion Molecules
  9. Pandurangan AK, Mohebali N, Hasanpourghadi M, Esa NM
    Appl Biochem Biotechnol, 2022 Mar;194(3):1091-1104.
    PMID: 35040047 DOI: 10.1007/s12010-021-03788-2
    Ulcerative colitis (UC) is a serious health condition and defined as inflammation in the colon. Untreated, UC can develop into colitis-associated cancer (CAC), for which effective medicines are not available. Natural products are a better choice to treat UC by alleviating the inflammation. Caffeic acid phenethyl ester (CAPE) is a phenolic compound and known for its beneficial effects, including antibacterial, anti-inflammatory, anti-diabetic, and anticancer. We aimed to study the effect of CAPE on dextran sulfate sodium (DSS)-induced UC in mouse model. Administration of CAPE to DSS-induced mice protected against colon damage by improving body weight of mice, reducing the weight of spleen, and increased colon length. In addition, administration of CAPE resulted reduced the activity of myeloperoxidase (MPO) and CD68+ positive cells. Furthermore, a significant decrease in the production of key cytokines and the expression of nuclear factor (p65-NF)-κB. Moreover, p65-NF-κB activation was reduced in lipopolysaccharide (LPS)-treated RAW 264.7 macrophage cells from mouse origin. CAPE treatment leads to the reduced expressions of intercellular adhesion molecules (ICAM)-1 and vascular cell adhesion molecules (VCAM), both are key cell adhesion molecules. The results of this study clearly indicate that CAPE can potentially control inflammation in the colon and can be used as a therapy for UC.
    Matched MeSH terms: Cell Adhesion Molecules/metabolism
  10. Alshrari AS, Hudu SA, Asdaq SMB, Ali AM, Kin CV, Omar AR, et al.
    J Infect Public Health, 2021 Nov;14(11):1603-1611.
    PMID: 34624714 DOI: 10.1016/j.jiph.2021.09.001
    BACKGROUND: Rhinoviruses (RV) are associated with the development and exacerbations of asthma and chronic obstructive pulmonary disease. They've also been linked to more severe diseases like pneumonia, acute bronchiolitis, croup, and otitis media. Because of the hypervariable sequences in the same serotypes, no effective vaccine against rhinoviruses has been developed to date. With the availability of new full-length genome sequences for all RV-A and RV-B serotyped strains, this study used bioinformatics to find a suitable RV strain with the highest similarity matrices to the other strains.

    METHODS: The full genomic sequences of all known different RV-A and -B prototypes were downloaded from the National Centre for Biotechnology Information (NCBI) and divided into minor low-density lipoprotein receptor (LDLR) and major intercellular adhesion molecule groups (ICAM). The sequences were edited using Biological Sequence Alignment Editor, v 7.2.0 (BioEdit software) to study each capsid protein (VP1, VP2, VP3, and VP4) and analyzed using the EMBL-EBI ClustalW server and the more current Clustal Omega tool for the calculation of the identities and similarities.

    RESULTS: We analyzed and predicted immunogenic motifs from capsid proteins that are conserved across distinct RV serotypes using a bioinformatics technique. The amino acid sequences of VP3 were found to be the most varied, while VP4 was the most conserved protein among all RV-A and RV-B strains. Among all strains studied, RV-74 demonstrated the highest degree of homology to other strains and could be a potential genetic source for recombinant protein production. Nine highly conserved regions with a minimum length of 9-mers were identified, which could serve as potential immune targets against rhinoviruses.

    CONCLUSION: Therefore, bioinformatics analysis conducted in the current study has paved the way for the selection of immunogenic targets. Bioinformatically, the ideal strain's capsid protein is suggested to contain the most common RVs immunogenic sites.

    Matched MeSH terms: Cell Adhesion Molecules
  11. Chua P, Lim WK
    Cell Biol Int, 2023 Feb;47(2):367-373.
    PMID: 36423248 DOI: 10.1002/cbin.11966
    The culture of adherent mammalian cells involves adhesion to the tissue culture vessel. This requires attachment factors from serum and/or a suitable substrate on the vessel surface. Some cells require collagen or other substrates to promote neurite outgrowth, differentiation or growth. However, laboratories often lack guidance on the selection and/or optimisation of collagen. We model such selection/optimisation work in the PC12 neuronal cell line. PC12 (NS-1 variant) cells require a substrate for adherence. Comparing cell attachment against a series of substrates, we found collagen IV to be optimal. We show by comparison of morphology against a range of concentrations that 10 µg/ml is sufficient for supporting cell attachment, and also differentiation. PC12 cells from Riken Cell Bank do not require a substrate for routine culturing but only for differentiation. As all substrates supported attachment equally well, we used a novel serum-free approach and identified collagen IV as its preferred substrate. For these cells, Dulbecco's modified eagle's medium but not Roswell Park Memorial Institute (RPMI) media supports normal cell attachment. However, coating with collagen IV enabled the cells to grow equally well in RPMI. Hence the strategic use of collagen is essential in laboratories working with anchorage-dependent cell lines.
    Matched MeSH terms: Cell Adhesion
  12. Low CF, Chong CM
    Fish Shellfish Immunol, 2020 Sep;104:605-612.
    PMID: 32619624 DOI: 10.1016/j.fsi.2020.06.047
    Classical characteristic of the innate immune system is the lack of ability to build up immunological memory, contrast to the adaptive immune system that is capable of "remembering" antigens, and rapidly mount a greater magnitude of immune response upon subsequent exposure to the same antigens. Peculiarly, immunological memory of innate immunity is evidenced in invertebrates. At least three different memory phenomena have been described, namely sustained unique response, recalled response, and immune shift. Studies attended to decipher the mechanistic biology of the innate immune memory reveals the role of epigenetics, which modulates the response of immune memory, and the heritability of immune memory to subsequent generations. A parthenogenetic Artemia model demonstrated successful transgenerational epigenetic inheritance of resistance trait against Vibrio campbellii. Following, the role of invertebrate hemocytes and Down syndrome cell adhesion molecule (Dscam) in innate immune memory is reviewed. While there is no vertebrate antibody homolog found in invertebrates, Dscam was found to resemble the functionality of vertebrate antibody. Insight of Dscam as immune factor was illustrated further in the current review.
    Matched MeSH terms: Cell Adhesion Molecules/genetics; Cell Adhesion Molecules/immunology*
  13. Mohtar MA, Hernychova L, O'Neill JR, Lawrence ML, Murray E, Vojtesek B, et al.
    Mol Cell Proteomics, 2018 04;17(4):737-763.
    PMID: 29339412 DOI: 10.1074/mcp.RA118.000573
    AGR2 is an oncogenic endoplasmic reticulum (ER)-resident protein disulfide isomerase. AGR2 protein has a relatively unique property for a chaperone in that it can bind sequence-specifically to a specific peptide motif (TTIYY). A synthetic TTIYY-containing peptide column was used to affinity-purify AGR2 from crude lysates highlighting peptide selectivity in complex mixtures. Hydrogen-deuterium exchange mass spectrometry localized the dominant region in AGR2 that interacts with the TTIYY peptide to within a structural loop from amino acids 131-135 (VDPSL). A peptide binding site consensus of Tx[IL][YF][YF] was developed for AGR2 by measuring its activity against a mutant peptide library. Screening the human proteome for proteins harboring this motif revealed an enrichment in transmembrane proteins and we focused on validating EpCAM as a potential AGR2-interacting protein. AGR2 and EpCAM proteins formed a dose-dependent protein-protein interaction in vitro Proximity ligation assays demonstrated that endogenous AGR2 and EpCAM protein associate in cells. Introducing a single alanine mutation in EpCAM at Tyr251 attenuated its binding to AGR2 in vitro and in cells. Hydrogen-deuterium exchange mass spectrometry was used to identify a stable binding site for AGR2 on EpCAM, adjacent to the TLIYY motif and surrounding EpCAM's detergent binding site. These data define a dominant site on AGR2 that mediates its specific peptide-binding function. EpCAM forms a model client protein for AGR2 to study how an ER-resident chaperone can dock specifically to a peptide motif and regulate the trafficking a protein destined for the secretory pathway.
    Matched MeSH terms: Epithelial Cell Adhesion Molecule/genetics; Epithelial Cell Adhesion Molecule/metabolism*
  14. Yuhainis Firus Khan A, Mohtar F, Rahman TA, Muid SA, Froemming GRA, Nawawi H
    J Appl Biomed, 2023 Jun;21(2):73-79.
    PMID: 37212154 DOI: 10.32725/jab.2023.006
    INTRODUCTION: Thymoquinone (TQ) is one of the bioactive compounds in Nigella sativa (NS). Also known as black seeds/cumin, it has been postulated to possess anti-atherogenic properties. However, research on the effects of NS oil (NSO) and TQ on atherogenesis remain scarce. The aim of this study is to determine gene and protein expression of Intercellular Adhesion Molecule-1 (ICAM-1), Vascular Cell Adhesion Molecule-1 (VCAM-1), and Endothelial-eukocyte adhesion molecule (E-selectin) in Human Coronary Artery Endothelial Cells (HCAECs).

    METHODS: HCAECs were stimulated for 24 hours (h) with 200 µg/ml of Lipopolysaccharides (LPS) and different concentrations of NSO (55, 110, 220, 440 µg/ml) or TQ (4.5, 9.0, 18.0, 36.0 µm). The effects of NSO and TQ on gene and protein expressions were measured using multiplex gene assay and ELISA assay, respectively. Rose Bengal assay was used to analyse monocyte binding activity.

    RESULTS: NSO and TQ significantly reduced ICAM-1 and VCAM-1 gene and protein expressions. TQ showed significant reduction activity of the biomarkers in dose dependent manner. HCAECs pre-treated with NSO and TQ for 24 h significantly lowered monocytes adherence compared to non-treated HCAECs.

    CONCLUSIONS: NSO and TQ supplementation have anti-atherogenic properties and inhibit monocytes' adherence to HCAECs via down-regulation of ICAM-1 expression. NSO could potentially be incorporated in standard treatment regimens to prevent atherosclerosis and its related complications.

    Matched MeSH terms: Vascular Cell Adhesion Molecule-1/genetics; Vascular Cell Adhesion Molecule-1/pharmacology
  15. Pai YJ, Abdullah NL, Mohd-Zin SW, Mohammed RS, Rolo A, Greene ND, et al.
    PMID: 22945349 DOI: 10.1002/bdra.23072
    Adhesion and fusion of epithelial sheets marks the completion of many morphogenetic events during embryogenesis. Neural tube closure involves an epithelial fusion sequence in which the apposing neural folds adhere initially via cellular protrusions, proceed to a more stable union, and subsequently undergo remodeling of the epithelial structures to yield a separate neural tube roof plate and overlying nonneural ectoderm. Cellular protrusions comprise lamellipodia and filopodia, and studies in several different systems emphasize the critical role of RhoGTPases in their regulation. How epithelia establish initial adhesion is poorly understood but, in neurulation, may involve interactions between EphA receptors and their ephrinA ligands. Epithelial remodeling is spatially and temporally correlated with apoptosis in the dorsal neural tube midline, but experimental inhibition of this cell death does not prevent fusion and remodeling. A variety of molecular signaling systems have been implicated in the late events of morphogenesis, but genetic redundancy, for example among the integrins and laminins, makes identification of the critical players challenging. An improved understanding of epithelial fusion can provide insights into normal developmental processes and may also indicate the mode of origin of clinically important birth defects.
    Matched MeSH terms: Cell Adhesion/genetics; Cell Adhesion/physiology
  16. Lim SS, Chai CY, Loh HS
    Mater Sci Eng C Mater Biol Appl, 2017 Jul 01;76:144-152.
    PMID: 28482510 DOI: 10.1016/j.msec.2017.03.075
    Hydrothermally synthesized TiO2nanotubes (TNTs) were first used as a filler for chitosan scaffold for reinforcement purpose. Chitosan-TNTs (CTNTs) scaffolds prepared via direct blending and freeze drying retained cylindrical structure and showed enhanced compressive modulus and reduced degradation rate compared to chitosan membrane which experienced severe shrinkage after rehydration with ethanol. Macroporous interconnectivity with pore size of 70-230μm and porosity of 88% were found in CTNTs scaffolds. Subsequently, the functionalization of CTNTs scaffolds with CaCl2solutions (0.5mM-40.5mM) was conducted at physiological pH. The adsorption isotherm of Ca2+ions onto CTNTs scaffolds fitted well with Freundlich isotherm. CTNTs scaffolds with Ca2+ions showed high biocompatibility by promoting adhesion, proliferation and early differentiation of MG63 in a non-dose dependent manner. CTNTs scaffolds with Ca2+ions can be an alternative for bone regeneration.
    Matched MeSH terms: Cell Adhesion
  17. Chen TF, Siow KS, Ng PY, Majlis BY
    Mater Sci Eng C Mater Biol Appl, 2017 Oct 01;79:613-621.
    PMID: 28629060 DOI: 10.1016/j.msec.2017.05.091
    Our studies focused on improving the biocompatibility properties of two microfluidic prototyping substrates i.e. polyurethane methacrylate (PUMA) and off-stoichiometry thiol-ene (OSTE-80) polymer by Ar and N2plasma treatment. The contact angle (CA) measurement showed that both plasma treatments inserted oxygen and nitrogen moieties increased the surface energy and hydrophilicity of PUMA and OSTE-80 polymer which corresponded to an increase of nitrogen to carbon ratios (N/C), as measured by XPS, to provide a conducive environment for cell attachments and proliferation. Under the SEM observation, the surface topography of PUMA and OSTE-80 polymer showed minimal changes after the plasma treatments. Furthermore, ageing studies showed that plasma-treated PUMA and OSTE-80 polymer had stable hydrophilicity and nitrogen composition during storage in ambient air for 15days. After in vitro cell culture of human umbilical vein endothelial cells (HUVECs) on these surfaces for 24h and 72h, both trypan blue and alamar blue assays indicated that PUMA and OSTE-80 polymer treated with N2plasma had the highest viability and proliferation. The polar nitrogen moieties, specifically amide groups, encouraged the HUVECs adhesion on the plasma-treated PUMA and OSTE-80 surfaces. Interestingly, PUMA polymer treated with Ar and N2plasma showed different HUVECs morphology which was spindle and cobblestone-shaped respectively after 72h of incubation. On the contrary, a monolayer of well-spread HUVECs formed on the Ar and N2plasma-treated OSTE-80 polymers. These variable morphologies observed can be ascribed to the adherence HUVECs on the different elastic moduli of these surfaces whereby further investigation might be needed. Overall, Ar and N2plasma treatment had successfully altered the surface properties of PUMA and OSTE-80 polymer by increasing its surface energy, hydrophilicity and chemical functionalities to create a biocompatible surface for HUVECs adhesion and proliferation.
    Matched MeSH terms: Cell Adhesion
  18. Ataollahi F, Pramanik S, Moradi A, Dalilottojari A, Pingguan-Murphy B, Wan Abas WA, et al.
    J Biomed Mater Res A, 2015 Jul;103(7):2203-13.
    PMID: 24733741 DOI: 10.1002/jbm.a.35186
    Extracellular environments can regulate cell behavior because cells can actively sense their mechanical environments. This study evaluated the adhesion, proliferation and morphology of endothelial cells on polydimethylsiloxane (PDMS)/alumina (Al2 O3 ) composites and pure PDMS. The substrates were prepared from pure PDMS and its composites with 2.5, 5, 7.5, and 10 wt % Al2 O3 at a curing temperature of 50°C for 4 h. The substrates were then characterized by mechanical, structural, and morphological analyses. The cell adhesion, proliferation, and morphology of cultured bovine aortic endothelial (BAEC) cells on substrate materials were evaluated by using resazurin assay and 1,1'-dioctadecyl-1,3,3,3',3'-tetramethylindocarbocyanine perchlorate-acetylated LDL (Dil-Ac-LDL) cell staining, respectively. The composites (PDMS/2.5, 5, 7.5, and 10 wt % Al2 O3 ) exhibited higher stiffness than the pure PDMS substrate. The results also revealed that stiffer substrates promoted endothelial cell adhesion and proliferation and also induced spread morphology in the endothelial cells compared with lesser stiff substrates. Statistical analysis showed that the effect of time on cell proliferation depended on stiffness. Therefore, this study concludes that the addition of different Al2 O3 percentages to PDMS elevated substrate stiffness which in turn increased endothelial cell adhesion and proliferation significantly and induced spindle shape morphology in endothelial cells.
    Matched MeSH terms: Cell Adhesion*
  19. Nordin MA, Wan Harun WH, Abdul Razak F
    Arch Oral Biol, 2013 Oct;58(10):1335-42.
    PMID: 23915676 DOI: 10.1016/j.archoralbio.2013.07.001
    The adherence of Candida to mucosal surfaces is the initial step for successful invasive process of the oral cavity. The study aimed to investigate the effect of two plant extracts on the non-specific and specific bindings of oral candida.
    Matched MeSH terms: Cell Adhesion/drug effects*
  20. Ahmad MR, Nakajima M, Kojima M, Kojima S, Homma M, Fukuda T
    IEEE Trans Nanobioscience, 2012 Mar;11(1):70-8.
    PMID: 22275723 DOI: 10.1109/TNB.2011.2179809
    In this paper, single cells adhesion force was measured using a nanofork. The nanofork was used to pick up a single cell on a line array substrate inside an environmental scanning electron microscope (ESEM). The line array substrate was used to provide small gaps between the single cells and the substrate. Therefore, the nanofork could be inserted through these gaps in order to successfully pick up a single cell. Adhesion force was measured during the cell pick-up process from the deflection of the cantilever beam. The nanofork was fabricated using focused ion beam (FIB) etching process while the line array substrate was fabricated using nanoimprinting technology. As to investigate the effect of contact area on the strength of the adhesion force, two sizes of gap distance of line array substrate were used, i.e., 1 μm and 2 μm. Results showed that cells attached on the 1 μm gap line array substrate required more force to be released as compared to the cells attached on the 1 μm gap line array substrate.
    Matched MeSH terms: Cell Adhesion/physiology*
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links