METHODS: The full genomic sequences of all known different RV-A and -B prototypes were downloaded from the National Centre for Biotechnology Information (NCBI) and divided into minor low-density lipoprotein receptor (LDLR) and major intercellular adhesion molecule groups (ICAM). The sequences were edited using Biological Sequence Alignment Editor, v 7.2.0 (BioEdit software) to study each capsid protein (VP1, VP2, VP3, and VP4) and analyzed using the EMBL-EBI ClustalW server and the more current Clustal Omega tool for the calculation of the identities and similarities.
RESULTS: We analyzed and predicted immunogenic motifs from capsid proteins that are conserved across distinct RV serotypes using a bioinformatics technique. The amino acid sequences of VP3 were found to be the most varied, while VP4 was the most conserved protein among all RV-A and RV-B strains. Among all strains studied, RV-74 demonstrated the highest degree of homology to other strains and could be a potential genetic source for recombinant protein production. Nine highly conserved regions with a minimum length of 9-mers were identified, which could serve as potential immune targets against rhinoviruses.
CONCLUSION: Therefore, bioinformatics analysis conducted in the current study has paved the way for the selection of immunogenic targets. Bioinformatically, the ideal strain's capsid protein is suggested to contain the most common RVs immunogenic sites.
METHODS: HCAECs were stimulated for 24 hours (h) with 200 µg/ml of Lipopolysaccharides (LPS) and different concentrations of NSO (55, 110, 220, 440 µg/ml) or TQ (4.5, 9.0, 18.0, 36.0 µm). The effects of NSO and TQ on gene and protein expressions were measured using multiplex gene assay and ELISA assay, respectively. Rose Bengal assay was used to analyse monocyte binding activity.
RESULTS: NSO and TQ significantly reduced ICAM-1 and VCAM-1 gene and protein expressions. TQ showed significant reduction activity of the biomarkers in dose dependent manner. HCAECs pre-treated with NSO and TQ for 24 h significantly lowered monocytes adherence compared to non-treated HCAECs.
CONCLUSIONS: NSO and TQ supplementation have anti-atherogenic properties and inhibit monocytes' adherence to HCAECs via down-regulation of ICAM-1 expression. NSO could potentially be incorporated in standard treatment regimens to prevent atherosclerosis and its related complications.