METHODOLOGY: Dental pulp stem cells from healthy (DPSCs) and carious teeth (DPSCs-CT) were isolated from young donors. Both cell lines were expanded in identical culture conditions and subsequently differentiated towards DAergic-like cells using pre-defined dopaminergic cocktails. The dopaminergic efficiencies were evaluated both at gene and protein as well as at secretome levels.
RESULTS: The efficiency of DPSCs-CT to differentiate into DAergic-like cells was not equivalent to that of DPSCs. This was further reflected in both gene and protein generation whereby key neuronal markers such as nestin, NURR1 and beta-III-tubulin were expressed significantly lower as compared to differentiated DPSCs (P cell communication family (APBB1).
CONCLUSIONS: DPSCs-CT were able to differentiate into DAergic-like cells but not as efficiently as DPSCs. As such, prior to use in regenerative medicine, stem cells from any source should be thoroughly investigated beyond conventional benchmarks such as that proposed by the International Society for Cellular Therapy (ISCT).
AIM: Thus, this review is focused on understanding their potential uses and factors influencing their pluripotent status in vitro.
CONCLUSION: In short, this cell source could be an ideal cellular resource for pluripotent cells for potential applications in allogeneic cellular replacement therapies, fetal tissue engineering, pharmaceutical screening, and in disease modelling.