Displaying publications 1 - 20 of 82 in total

Abstract:
Sort:
  1. Abas AB, Mohd Said DA, Aziz Mohammed MA, Sathiakumar N
    Am. J. Ind. Med., 2013 Jan;56(1):65-76.
    PMID: 22544443 DOI: 10.1002/ajim.22056
    BACKGROUND: In Malaysia, surveillance of fatal occupational injuries is fragmented. We therefore analyzed an alternative data source from Malaysia's Social Security organization, the Pertubuhan Keselamatan Sosial (PERKESO).
    METHODS: We conducted a secondary data analysis of the PERKESO database comprised of 7 million employees from 2002 to 2006.
    RESULTS: Overall, the average annual incidence was 9.2 fatal occupational injuries per 100,000 workers. During the 5-year period, there was a decrease in the absolute number of fatal injuries by 16% and the incidence by 34%. The transportation sector reported the highest incidence of fatal injuries (35.1/100,000), followed by agriculture (30.5/100,000) and construction (19.3/100,000) sectors. Persons of Indian ethnicity were more likely to sustain fatal injuries compared to other ethnic groups.
    CONCLUSIONS: Government and industry should develop rigorous strategies to detect hazards in the workplace, especially in sectors that continuously record high injury rates. Targeted interventions emphasizing worker empowerment coupled with systematic monitoring and evaluation is critical to ensure success in prevention and control measures.
    Matched MeSH terms: Construction Industry/statistics & numerical data*
  2. Abd Rahman MN, Abdul Rani MR, Rohani JM
    J Hum Ergol (Tokyo), 2011 Dec;40(1-2):19-36.
    PMID: 25665205 DOI: 10.11183/jhe.40.19
    This paper describes the development of the Workplace Ergonomic Risk Assessment (WERA) for investigating the physical risk factor associated with work-related musculoskeletal disorders (WMSDs). The initial development of WERA tool involved the following procedures: (1) first stage, development of WERA prototype from literature review, (2) second stage, evaluation of the psychometric properties including (a) validity trials and (b) reliability and usability trials. In the validity trials, the relationship of the individual WERA body part scores to the development of pain or discomfort is statistically significant for the wrist, shoulder and back regions. It shows that the WERA assessment provided a good indication of work-related musculoskeletal disorders which might be reported as pain, ache or discomfort in the relevant body regions. In the reliability trials, the results of inter-observer reliability shows that moderate agreement among the observers while from the feedback questionnaire survey about the usability of WERA tool, all participants including expert and management teams agreed that the prototype of WERA tool was easy and quick to use, applicable to workplace assessment for the wide range of job/task and valuable at work. It was confirmed that there was no need of training required to do WERA assessment. Therefore, the WERA assessment has been designed for easy and quick use, and for those who are trained to use it do not need previous skills in observation techniques although this would be an advantage. As WERA is a pen and paper technique that can be used without any special equipment, WERA assessment can be done in any space of workplaces without disruption to the task that have been observed.
    Matched MeSH terms: Construction Industry
  3. Abu Aisheh YI, Tayeh BA, Alaloul WS, Jouda AF
    PMID: 33805581 DOI: 10.3390/ijerph18073553
    Infrastructure projects are the foundation for essential public services and have an influential position in societal development. Although the role of infrastructure projects is substantial, they can involve complexities and safety issues that lead to an unsafe environment, and which impacts the project key stakeholders. Therefore, this study aimed to evaluate the barriers to implementing occupational safety in infrastructure projects in the Gaza Strip, which cause serious threats and reduce project performance. To evaluate the barriers, 39 items were highlighted and modified as per the construction context and environment, and which later were distributed in the form of a questionnaire, to get feedback from consultants and contractors. The analysis shows that in the safety policy barriers group, consultants and contractors both ranked the item "a contractor committed to an occupational safety program is not rewarded" first. In the management barriers group, consultants and contractors both ranked the item "safety engineer does not have significant powers, such as stopping work when needed" in the first place. In the behavior and culture barriers group, consultants and contractors both ranked the item "workers who are not committed to occupational safety are not excluded" in the first place. Overall, both consultants and contractors shared the same viewpoint in classifying the barriers in the working environment. The outcome of this study is beneficial for Palestinian construction industry policymakers, so they can monitor the highlighted barriers in on-going infrastructure projects and can modify the safety guidelines accordingly.
    Matched MeSH terms: Construction Industry*
  4. Abu Aisheh YI, Tayeh BA, Alaloul WS, Almalki A
    Int J Occup Saf Ergon, 2022 Dec;28(4):1981-1993.
    PMID: 34126867 DOI: 10.1080/10803548.2021.1942648
    Objectives. Lean construction techniques have been considered an effective approach and strategy to reduce accidents in construction projects. This article aims to investigate the application of the lean construction principle and its impact on occupational health and safety. Methods. To achieve the aim, an analytical descriptive method was used. The data were collected through a questionnaire, with 70 respondents who were chosen using a random stratified sample method. The questionnaire evaluated the perception of contractors and consultants about the important lean construction factors and their impact on construction project safety. Results. There is an agreement that the application of lean construction techniques can be impeded by challenges like lack of lean construction knowledge, complexity, misconception about lean construction and difficulties in changing employees. Conclusions. The study identified strategies that could be used to address these challenges that will improve the safety of construction projects. These include enlightenment on benefits of the lean practice, publication of improvements realized from lean practice, training, workers' involvement and empowerment, persistence, robust planning and gradual implementation.
    Matched MeSH terms: Construction Industry*
  5. Abu Aisheh YI, Alaloul WS, Alhammadi SA, Tayeh BA
    Int J Occup Saf Ergon, 2023 Dec;29(4):1358-1367.
    PMID: 36177998 DOI: 10.1080/10803548.2022.2131123
    The construction industry is one of the hazardous fields due to its exceptional environment. Therefore, this work aimed to assess the essential drivers needed for employing safety management in the Palestinian construction industry. The drivers for safety management were recognized from earlier literature, where the questionnaires were dispersed to professionals from construction projects. The exploratory factor analysis (EFA) technique was then performed to contextually adjust the identified drivers. The results showed that safety management drivers could be categorized into three constructs: management, awareness and policy. In addition, partial least squares structural equation modelling (PLS-SEM) was performed to generate the safety management driver's model. The results indicated that management drivers were vital drivers for adopting safety management. The study's findings would act as a reference for construction stakeholders to decrease danger and enhance the construction project's success via implementing safety management drivers.
    Matched MeSH terms: Construction Industry*
  6. Adeleke AQ, Bahaudin AY, Kamaruddeen AM, Bamgbade JA, Salimon MG, Khan MWA, et al.
    Saf Health Work, 2018 Mar;9(1):115-124.
    PMID: 30363069 DOI: 10.1016/j.shaw.2017.05.004
    Background: Substantial empirical research has shown conflicting results regarding the influence of organizational external factors on construction risk management, suggesting the necessity to introduce a moderator into the study. The present research confirmed whether rules and regulations matter on the relationships between organizational external factors and construction risk management.

    Methods: Based on discouragement and organizational control theory, this research examined the effects of organizational external factors and rules and regulations on construction risk management among 238 employees operating in construction companies in Abuja and Lagos, Nigeria. A personally administered questionnaire was used to acquire the data. The data were analyzed using partial least squares structural equation modeling.

    Results: A significant positive relationship between organizational external factors and construction risk management was asserted. This study also found a significant positive relationship between rules and regulations and construction risk management. As anticipated, rules and regulations were found to moderate the relationship between organizational external factors and construction risk management, with a significant positive result. Similarly, a significant interaction effect was also found between rules and regulations and organizational external factors. Implications of the research from a Nigerian point of view have also been discussed.

    Conclusion: Political, economy, and technology factors helped the construction companies to reduce the chance of risk occurrence during the construction activities. Rules and regulations also helped to lessen the rate of accidents involving construction workers as well as the duration of the projects. Similarly, the influence of the organizational external factors with rules and regulations on construction risk management has proven that most of the construction companies that implement the aforementioned factors have the chance to deliver their projects within the stipulated time, cost, and qualities, which can be used as a yardstick to measure a good project.

    Matched MeSH terms: Construction Industry
  7. Aggelis DG, Alver N, Chai HK
    ScientificWorldJournal, 2014;2014:435238.
    PMID: 24701167 DOI: 10.1155/2014/435238
    Matched MeSH terms: Construction Industry/standards*; Construction Industry/trends
  8. Ahmad Fuad Ab Ghani, Azrin Ahmad, Nor Salim Muhammad, Reduan Mat Dan, Rustamreen Jenal
    MyJurnal
    This study describes the review on maintenance related issues during design and construction stage
    within construction industry. The paper highlights the causes and errors made during design and
    construction stage and their impact during the operation/production/occupancy stage as well as the
    maintenance costs associated with it. The study identifies the mistakes in the working processes within
    design and construction stage leading to the errors that affect the durability, performance, reliability,
    maintainability, availability and safety of the systems. The paper presents a comprehensive review of
    the published literatures, journals, technical papers in the related areas in the construction field. The
    review highlights the new approaches and decision framework which link the designers and
    construction personnel that could reduce the errors and defects in construction which then lead to
    maintenance issues and asset management. The factors of accessibility, materials, design and
    documentation standardization have been discussed thoroughly for better understanding in improving
    maintenance and physical asset management in project commissioning.
    Matched MeSH terms: Construction Industry
  9. Ahmed I, Shaukat MZ, Usman A, Nawaz MM, Nazir MS
    Int J Occup Saf Ergon, 2018 Jun;24(2):240-250.
    PMID: 28795938 DOI: 10.1080/10803548.2017.1366145
    This research covers the current status of occupational health and safety (OHS)-related practices in the informal construction segment of Pakistan. Data were collected, through interviews, from 316 construction sites employing 3577 workers. The results of the study reveal that both employers and workers lack knowledge of OHS laws/standards and no practices of this nature are enacted at these construction sites. Alarmingly, work-related accidents, whenever they happen, are not given due attention and there is no formal injury-report system. The informal construction industry employs a huge portion of the informal workforce, and lack of OHS happens at tremendous human cost. These research findings may thus play their role in strengthening the case for reforms in the sector. This study, if properly utilized, may also enable employers of the sector by increasing their knowledge about OHS practices and, as a result, trying to offer safer environments for their workers.
    Matched MeSH terms: Construction Industry*
  10. Balakrishnan K, Olutoye MA, Hameed BH
    Bioresour Technol, 2013 Jan;128:788-91.
    PMID: 23186664 DOI: 10.1016/j.biortech.2012.10.023
    The current research investigates synthesis of methyl esters by transesterification of waste cooking oil in a heterogeneous system, using barium meliorated construction site waste marble as solid base catalyst. The pretreated catalyst was calcined at 830 °C for 4h prior to its activity test to obtained solid oxide characterized by scanning electron microscopy/energy dispersive spectroscopy, BET surface area and pore size measurement. It was found that the as prepared catalyst has large pores which contributed to its high activity in transesterification reaction. The methyl ester yield of 88% was obtained when the methanol/oil molar ratio was 9:1, reaction temperature at 65 °C, reaction time 3h and catalyst/oil mass ratio of 3.0 wt.%. The catalyst can be reused over three cycles, offer low operating conditions, reduce energy consumption and waste generation in the production of biodiesel.
    Matched MeSH terms: Construction Industry
  11. Balasbaneh AT, Ramli MZ
    Environ Sci Pollut Res Int, 2020 Dec;27(34):43186-43201.
    PMID: 32734541 DOI: 10.1007/s11356-020-10141-3
    In recent years, off-site volumetric construction has been promoted as a viable strategy for improving the sustainability of the construction industry. Most prefabricated prefinished volumetric construction (PPVC) structures are composed of either steel or concrete; thus, it is imperative to carry out life cycle assessments (LCAs) for both types of structures. PPVC is a method by which free-standing volumetric modules-complete with finishes for walls, floors, and ceilings-are prefabricated and then transferred and erected on-site. Although many studies have examined these structures, few have combined economic and environmental life cycle analyses, particularly for prefinished volumetric construction buildings. The purpose of this study is to utilize LCA and life cycle cost (LCC) methods to compare the environmental impacts and costs of steel and concrete PPVCs "from cradle to grave." The results show that steel necessitates higher electricity usage than concrete in all environmental categories, while concrete has a higher emission rate. Steel outperforms concrete by approximately 37% in non-renewable energy measures, 38% in respiratory inorganics, 43% in land occupation, and 40% in mineral extraction. Concrete, on the other hand, performs 54% better on average in terms of measures adopted for greenhouse gas (GHG) emissions. Steel incurs a higher cost in the construction stage but is ultimately the more economical choice, costing 4% less than concrete PPVC owing to the recovery, recycling, and reuse of materials. In general, steel PPVC exhibits better performance, both in terms of cost and environmental factors (excluding GHG emissions). This study endeavors to improve the implementation and general understanding of PPVC.
    Matched MeSH terms: Construction Industry
  12. Beddu S, Abd Manan TSB, Zainoodin MM, Khan T, Wan Mohtar WHM, Nurika O, et al.
    Data Brief, 2020 Aug;31:105843.
    PMID: 32596432 DOI: 10.1016/j.dib.2020.105843
    Coal combustion by-products (CCPs) (i.e. fly (FA) and bottom (BA) ashes) generated by power plants contain heavy metals. This research presents leaching properties of coal ashes (FA and BA) collected from Jimah coal-fired power station, Port Dickson, Negeri Sembilan using USEPA standard methods namely toxicity characteristic leaching procedure (TCLP), and synthetic precipitation leaching procedure (SPLP). Heavy metals like lead (Pb), zinc (Zn), copper (Cu) and arsenic (As) were quantified using atomic absorption spectrometer (AAS). The leached of heavy metals fluxes were Cu < Zn < Pb < As. As leached the most whilst indicating of possible contamination from As. Overall, the ranges of leached concentration were adhered to permissible limits of hazardous waste criteria for metal (Pb and As) and industrial effluent (Zn and Cu). The presented data has potential reuse as reference for the coal ash concrete mixed design application in construction industries.
    Matched MeSH terms: Construction Industry
  13. Bruno Lot Tanko, Fadhlin Abdullah, Zuhaili Mohamad Ramly, Wallace Imoudu Enegbuma
    MyJurnal
    Value management explicitly targets to optimize value by providing necessary
    functions at the least cost without sacrificing quality and performance. However, the
    activities/methods of this technique in emerging economies are here and there
    related to informal methodology. Therefore, the occurrence of these activities in an
    evolving economy requires investigation. The exploration of the extent to which the
    measured variables influenced the latent factors informed the need for this study.
    Data was retrieved via self-administered questionnaire from 344 registered and
    practicing construction professionals in Nigeria. The data was analyzed using SPSS for
    descriptive analysis and Structural Equation Modelling (SEM). Kaiser-Meyer-Olkin
    measure of sampling adequacy revealed that the internal consistency of the
    developed research instrument was appropriate. Confirmatory factor analysis
    indicates satisfactory goodness of fit among acknowledged determinants of the
    model. Furthermore, the study revealed three (3) phases of the activities/methods of
    value management in the Nigerian construction industry which include: information,
    information/function analysis, and creativity/evaluation/development/presentation
    phases. This means that value management activities and methods are being
    practiced in Nigeria, however not as per the typical methodology or standard. The
    need to carry out the practice according to the formal value management
    methodology is therefore recommended.
    Matched MeSH terms: Construction Industry
  14. Buniya MK, Othman I, Sunindijo RY, Kashwani G, Durdyev S, Ismail S, et al.
    PMID: 34444218 DOI: 10.3390/ijerph18168469
    The construction sector is recognized as one of the most dangerous industries in the world. The situation is worsening in Iraq, as a result of a lack of attention to safety in the building industry and the poor implementation of safety programs. This research aims to identify the critical safety factors (CSFs) of safety program implementation in the Iraqi construction industry. The CSFs were first identified from a review of literature before being verified by construction practitioners, using semi-structured interviews. A questionnaire, based on the verified CSFs, was distributed to construction practitioners in Iraq. Exploratory factor analysis (EFA) was used to analyze the quantitative data, and the results show that the CSFs can be categorized into four constructs: worker involvement, safety prevention and control system, safety arrangement, and management commitment. Following that, partial least square structural equation modelling (PLS-SEM) was executed to establish the connection between safety program implementation and overall project success. The result confirms that safety program implementation has a significant, positive impact on project success. This article contributes to knowledge and practice by identifying the CSFs for implementing safety programs in the Iraqi construction industry. The successful implementation of a safety program not only improves safety performance, but also helps to meet other project goals.
    Matched MeSH terms: Construction Industry*
  15. Buniya MK, Othman I, Sunindijo RY, Karakhan AA, Kineber AF, Durdyev S
    Int J Occup Saf Ergon, 2023 Mar;29(1):129-140.
    PMID: 35125068 DOI: 10.1080/10803548.2022.2038419
    Implementing a safety program is an essential step toward improving safety performance. This research aims to develop an overall project success (OPS) model for building projects through investigating the direct and indirect impact of safety critical success factors (CSFs) on OPS mediated by safety program elements. First, interviews were carried out with experts in the Iraqi construction industry, and then a questionnaire survey was utilized to obtain feedback from construction professionals. The results revealed that 20 elements are needed to confirm and improve effectiveness. These elements were categorized into four constructs: management commitment and employee involvement, worksite analysis, hazard and prevention control, and health and safety training. The analysis confirms that the relationship between safety CSFs and OPS are mediated by safety program elements. These findings offer a glimmer of hope for implementing safety programs in the Iraqi construction sector, and can also be used to enhance safety performance.
    Matched MeSH terms: Construction Industry*
  16. Chang, Kok Yung, Kwan, Wai Hoe, Kua, Hui Bun
    Scientific Research Journal, 2018;15(1):75-83.
    MyJurnal
    The massive growth of construction industry especially in the developing countries results in extensive quarrying activities which ultimately would lead to the depletion of natural resources. Apart from extensive extraction of the natural granite from the earth for concrete production, marble production industry is also majorly contributing to the quarrying activities. In addition, high volume of waste is generated by the marble production industry as 70% of marble is wasted during the production such as quarrying, cutting, processing and others which is environmental unfriendly. In a way to achieve sustainable construction, the present study is to utilise the waste marble in replacing the coarse aggregate in concrete production. The engineering performance including workability, compressive strength, ultrasonic pulse velocity (UPV) and chloride penetration were analysed. The raw waste marble obtained from the industry were crushed and sieved into maximum size 20 mm and used to replace the coarse aggregate at the level of 20%, 40%, 60%, 80% and 100% respectively. Results show that 60% of the replacement level has yield to optimum result by achieving the highest compressive strength and UPV at approximate 5% higher than the control. Meanwhile, the effect on chloride penetration resistance is more significant, i.e. approximate 19% better than the control. However, increasing the replacement level of waste marble has no significant effect on workability, although an increasing trend was observed.
    Matched MeSH terms: Construction Industry
  17. Chong HY, Low TS
    Int J Occup Saf Ergon, 2014;20(3):503-13.
    PMID: 25189753
    Safety and health issues remain critical to the construction industry due to its working environment and the complexity of working practises. This research attempts to adopt 2 research approaches using statistical data and court cases to address and identify the causes and behavior underlying construction safety and health issues in Malaysia. Factual data on the period of 2000-2009 were retrieved to identify the causes and agents that contributed to health issues. Moreover, court cases were tabulated and analyzed to identify legal patterns of parties involved in construction site accidents. Approaches of this research produced consistent results and highlighted a significant reduction in the rate of accidents per construction project in Malaysia.
    Matched MeSH terms: Construction Industry/legislation & jurisprudence*; Construction Industry/statistics & numerical data*
  18. Dehdasht G, Ferwati MS, Zin RM, Abidin NZ
    PLoS One, 2020;15(2):e0228746.
    PMID: 32023306 DOI: 10.1371/journal.pone.0228746
    Successful implementation of the lean concept as a sustainable approach in the construction industry requires the identification of critical drivers in lean construction. Despite this significance, the number of in-depth studies toward understanding the considerable drivers of lean construction implementation is quite limited. There is also a shortage of methodologies for identifying key drivers. To address these challenges, this paper presents a list of all essential drivers within three aspects of sustainability (social, economic, and environmental) and proposes a novel methodology to rank the drivers and identify the key drivers for successful and sustainable lean construction implementation. In this regard, the entropy weighted Technique for Order of Preference by Similarity to Ideal Solution (TOPSIS) was employed in this research. Subsequently, an empirical study was conducted within the Malaysian construction industry to demonstrate the proposed method. Moreover, sensitivity analysis and comparison with the existing method were engaged to validate the stability and accuracy of the achieved results. The significant results obtained in this study are as follows: presenting, verifying and ranking of 63 important drivers; identifying 22 key drivers; proposing an MCDM model of key drivers. The outcomes show that the proposed method in this study is an effective and accurate tool that could help managers make better decisions.
    Matched MeSH terms: Construction Industry*
  19. Fediuk R, Mugahed Amran YH, Mosaberpanah MA, Danish A, El-Zeadani M, Klyuev SV, et al.
    Materials (Basel), 2020 Oct 22;13(21).
    PMID: 33105753 DOI: 10.3390/ma13214712
    The incessant demand for concrete is predicted to increase due to the fast construction developments worldwide. This demand requires a huge volume of cement production that could cause an ecological issue such as increasing the rates of CO2 emissions in the atmosphere. This motivated several scholars to search for various alternatives for cement and one of such alternatives is called sulfur-based concrete. This concrete composite contributes to reduce the amount of cement required to make conventional concrete. Sulfur can be used as a partial-alternate binder to Ordinary Portland Cement (OPC) to produce sulfur-based concrete, which is a composite matrix of construction materials collected mostly from aggregates and sulfur. Sulfur modified concrete outperforms conventional concrete in terms of rapid gain of early strength, low shrinkage, low thermal conductivity, high durability resistance and excellent adhesion. On the basis of mentioned superior characteristics of sulfur-based concrete, it can be applied as a leading construction material for underground utility systems, dams and offshore structures. Therefore, this study reviews the sources, emissions from construction enterprises and compositions of sulfur; describes the production techniques and properties of sulfur; and highlights related literature to generate comprehensive insights into the potential applications of sulfur-based concrete in the construction industry today.
    Matched MeSH terms: Construction Industry
  20. Firdaus Abd Latib, Haziq Zul Asyraf Zahari, Abdul Rahim Abdul Hamid, Kevin Chester Wong How Yee
    MyJurnal
    The probability of the construction accident to happen is high due the nature of
    Construction work that involves complex activities, methods, machineries, materials
    and hazards. The occupational safety and health (OSH) law and regulations are
    mandatory for every construction project to uphold. Responsibilities to ensure the
    safety and health at the workplace lies with those who create the risk and with those
    who work with the risk. The owner or client of the construction project has the upper
    hand in determining the standard of OSH implementation in their project through
    contract documents. If the contract documents comprehensively spell out OSH
    requirements and cover all OSH cost, then the issues of contractor not implementing
    OSH measures could be minimized. The objective of this study is to identify
    Occupational Safety and Health requirements (OSH) in the contract document of
    selected construction projects. To achieve this objective, a total of seven contract
    document was collected from several construction companies. The qualitative analysis
    was performed to identify the extent of OSH requirements and costs are being
    mentioned in the contract documents. The finding shows that most of the contract
    document contains very little emphasis on OSH requirements and budgeting. Only one
    contract contains, an appendix that spell out about the safe work practices for
    construction works. The visible allocated budget for OSH requirements for all seven
    contracts is very minute range from 0.21% to 1.99% of contract value. In order to
    ensure that occupational safety and health is properly implemented, safety needs must
    be included in the budget because implementation it is not free, this can be achieved
    by making it a permanent feature in all bills of quantity of the project.
    Matched MeSH terms: Construction Industry
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links