SCOPE: Extensive review of ecological literature and field observations shows Lepidosperma species to be important components of many ecosystems, often dominating understorey and sedge-rich communities. For the first time, a detailed ecological review of a Cyperaceae genus is presented.
CONCLUSIONS: Lepidosperma species are long-lived perennials with significant abundance and persistence in the landscape. Speciation patterns in the genus are of considerable interest due to complex biogeographical patterns and a high degree of habitat specificity. Potential benefits exist for medicinal products identified from several Lepidosperma species. Over 178 organisms, including 26 mammals, 42 birds, six reptiles, five amphibians, eight arachnids, 75 insects, three crustaceans and 13 fungi, are found to be dependent on, or making use of, Lepidosperma species. A significant relationship exists between Lepidosperma species and the moth genus Elachista. Implications for the conservation and ecology of both sedges and associated species are discussed.
METHODS: Adaxial walls of leaf epidermal cells were characterized using high-pressure-frozen freeze-substituted specimens, which retain their native dimensions during observations using transmission and scanning microscopy, accompanied by energy-dispersive X-ray spectroscopy to identify the role of biogenic silica in wall-based iridescence. Biogenic silica was experimentally removed using aqueous Na2CO3 and optical properties were compared using spectral reflectance.
KEY RESULTS AND CONCLUSIONS: Blue iridescence is produced in the adaxial epidermal cell wall, which contains helicoid lamellae. The blue iridescence from cell surfaces is left-circularly polarized. The position of the silica granules is entrained by the helicoid microfibrillar layers, and granules accumulate at a uniform position within the helicoids, contributing to the structure that produces the blue iridescence, as part of the unit cell responsible for 2 ° Bragg scatter. Removal of silica from the walls eliminated the blue colour. Addition of silica nanoparticles on existing cellulosic lamellae is a novel mechanism for adding structural colour in organisms.