Displaying publications 1 - 20 of 70 in total

Abstract:
Sort:
  1. Nakamoto H, Amaya Y, Komatsu T, Suzuki T, Dohmae N, Nakamura Y, et al.
    Biochem. J., 2018 08 16;475(15):2559-2576.
    PMID: 30045873 DOI: 10.1042/BCJ20180230
    Hsp90 is an ATP-dependent molecular chaperone that assists folding and conformational maturation/maintenance of many proteins. It is a potential cancer drug target because it chaperones oncoproteins. A prokaryotic homolog of Hsp90 (HtpG) is essential for thermo-tolerance in some bacteria and virulence of zoonotic pathogens. To identify a new class of small molecules which target prokaryotic and eukaryotic Hsp90s, we studied the effects of a naturally occurring cyclic sesquiterpene, zerumbone, which inhibits proliferation of a wide variety of tumor cells, on the activity of Hsp90. Zerumbone enhanced the ATPase activity of cyanobacterial Hsp90 (Hsp90SE), yeast Hsp90, and human Hsp90α. It also enhanced the catalytic efficiency of Hsp90SE by greatly increasing kcat Mass analysis showed that zerumbone binds to cysteine side chains of Hsp90SE covalently. Mutational studies identified 3 cysteine residues (one per each domain of Hsp90SE) that are involved in the enhancement, suggesting the presence of allosteric sites in the middle and C-terminal domains of Hsp90SE Treatment of cyanobacterial cells with zerumbone caused them to become very temperature-sensitive, a phenotype reminiscent of cyanobacterial Hsp90 mutants, and also decreased the cellular level of linker polypeptides that are clients for Hsp90SE Zerumbone showed cellular toxicity on cancer-derived mammalian cells by inducing apoptosis. In addition, zerumbone inhibited the binding of Hsp90/Cdc37 to client kinases. Altogether, we conclude that modification of cysteine residues of Hsp90 by zerumbone enhances its ATPase activity and inhibits physiological Hsp90 function. The activation of Hsp90 may provide new strategies to inhibit its chaperone function in cells.
    Matched MeSH terms: Cysteine/metabolism; Cysteine/chemistry
  2. Bharadwaj KK, Sarkar T, Ghosh A, Baishya D, Rabha B, Panda MK, et al.
    Appl Biochem Biotechnol, 2021 Oct;193(10):3371-3394.
    PMID: 34212286 DOI: 10.1007/s12010-021-03608-7
    COVID-19 is a disease that puts most of the world on lockdown and the search for therapeutic drugs is still ongoing. Therefore, this study used in silico screening to identify natural bioactive compounds from fruits, herbaceous plants, and marine invertebrates that are able to inhibit protease activity in SARS-CoV-2 (PDB: 6LU7). We have used extensive screening strategies such as drug likeliness, antiviral activity value prediction, molecular docking, ADME, molecular dynamics (MD) simulation, and MM/GBSA. A total of 17 compounds were shortlisted using Lipinski's rule in which 5 compounds showed significant predicted antiviral activity values. Among these 5, only 2 compounds, Macrolactin A and Stachyflin, showed good binding energy of -9.22 and -8.00 kcal/mol, respectively, within the binding pocket of the Mpro catalytic residues (HIS 41 and CYS 145). These two compounds were further analyzed to determine their ADME properties. The ADME evaluation of these 2 compounds suggested that they could be effective in developing therapeutic drugs to be used in clinical trials. MD simulations showed that protein-ligand complexes of Macrolactin A and Stachyflin with the target receptor (6LU7) were stable for 100 nanoseconds. The MM/GBSA calculations of Mpro-Macrolactin A complex indicated higher binding free energy (-42.58 ± 6.35 kcal/mol). Dynamic cross-correlation matrix (DCCM) and principal component analysis (PCA) on the residual movement in the MD trajectories further confirmed the stability of Macrolactin A bound state with 6LU7. In conclusion, this study showed that marine natural compound Macrolactin A could be an effective therapeutic inhibitor against SARS-CoV-2 protease (6LU7). Additional in vitro and in vivo validations are strongly needed to determine the efficacy and therapeutic dose of Macrolactin A in biological systems.
    Matched MeSH terms: Cysteine Proteinase Inhibitors/chemistry*
  3. Sim TS, Loke P, Lee MA, Singh M, Flotow H
    Parasitol Res, 2001 Sep;87(9):683-6.
    PMID: 11570549
    In this study, the genome of the Plasmodium falciparum Gombak A strain was examined for the presence of a gene encoding falcipain-2, a cysteine protease, using homology-based polymerase chain reaction cloning. The nucleotide sequence obtained from the gene cloned (designated pFG1) is approximately 99% homologous to other falcipain-2 genes from different strains. Comparatively, it is 69% homologous to falcipain-3 genes. Direct cloning of the falcipain-2 gene and its resemblance to the reported corresponding mRNA transcript suggests the absence of introns in this gene. Sequence alignment and comparison revealed four amino acid differences at positions 15, 51, 59 and 414 in the falcipain-2 from P. falciparum Gombak A as compared to other falcipain-2 proteins from different strains.
    Matched MeSH terms: Cysteine Endopeptidases/genetics*; Cysteine Endopeptidases/metabolism; Cysteine Endopeptidases/chemistry
  4. Mok WJ, Hatanaka Y, Seoka M, Itoh T, Tsukamasa Y, Ando M
    Food Chem, 2014 Mar 15;147:340-5.
    PMID: 24206728 DOI: 10.1016/j.foodchem.2013.09.157
    Mercury contamination, especially of seafood, continues to attract public concern. Cysteine, NH2CH(CH2SH)COOH, is a naturally occurring hydrophobic amino acid that contains a thiol group. The purpose of our study was to investigate the use of the additive cysteine in fish diets to reduce mercury concentration in fish, and to observe the effectiveness of dietary cysteine in fish livers. Diets containing 1% and 10% cysteine successfully decreased mercury concentrations in fish compared with the 0% cysteine diet. The liver may have formed excessive lipid droplets or was unable to mobilize lipid stores during exposure to mercury; additional cysteine could help to mobilize excessive lipids in it.
    Matched MeSH terms: Cysteine/metabolism*
  5. Ahmad T, Ismail A, Ahmad SA, Khalil KA, Leo TK, Awad EA, et al.
    Molecules, 2018 Mar 22;23(4).
    PMID: 29565325 DOI: 10.3390/molecules23040730
    Actinidin was used to pretreat the bovine hide and ultrasonic wave (53 kHz and 500 W) was used for the time durations of 2, 4 and 6 h at 60 °C to extract gelatin samples (UA2, UA4 and UA6, respectively). Control (UAC) gelatin was extracted using ultrasound for 6 h at 60 °C without enzyme pretreatment. There was significant (p < 0.05) increase in gelatin yield as the time duration of ultrasound treatment increased with UA6 giving the highest yield of 19.65%. Gel strength and viscosity of UAC and UA6 extracted gelatin samples were 627.53 and 502.16 g and 16.33 and 15.60 mPa.s, respectively. Longer duration of ultrasound treatment increased amino acids content of the extracted gelatin and UAC exhibited the highest content of amino acids. Progressive degradation of polypeptide chains was observed in the protein pattern of the extracted gelatin as the time duration of ultrasound extraction increased. Fourier transform infrared (FTIR) spectroscopy depicted loss of molecular order and degradation in UA6. Scanning electron microscopy (SEM) revealed protein aggregation and network formation in the gelatin samples with increasing time of ultrasound treatment. The study indicated that ultrasound assisted gelatin extraction using actinidin exhibited high yield with good quality gelatin.
    Matched MeSH terms: Cysteine Endopeptidases/chemistry*
  6. Obaid A, Mohd Jamil AK, Saharin SM, Mohamad S
    Chirality, 2021 11;33(11):810-823.
    PMID: 34486177 DOI: 10.1002/chir.23354
    A simple, inexpensive but effective approach for visual chiral recognition of ketoprofen enantiomers was developed using L-cysteine capped silver nanoparticles (L-Cys-AgNPs) as a colorimetric sensor. Upon the addition of R-ketoprofen to L-Cys-AgNPs, rapid aggregation occurred, and the solution changed color from yellow to green. However, the presence of S-ketoprofen did not induce any color change. The results were characterized using UV-Vis, FESEM, FT-IR, SERS, and zeta potential measurements. The chiral assay described in this work is easily distinguished with the naked eyes or using a UV-Vis spectrometer. The sensor revealed a good linear response to ketoprofen enantiomers in the concentration range of 8.33-33.3 μM with a detection limit of 4.52 μM and relative standard deviation of 3.73%. The proposed method was utilized for the determination of ketoprofen racemic mixtures in water samples and commercial tablets. The method excels by its simplicity, low cost, and good availability of materials.
    Matched MeSH terms: Cysteine
  7. Muthuraman A, Ramesh M, Shaikh SA, Aswinprakash S, Jagadeesh D
    Drug Metab Lett, 2021;14(3):177-192.
    PMID: 34895129 DOI: 10.2174/1872312814666211210111820
    Cysteine is one of the major intermediate products of cellular amino-acid metabolism. It is a semi-essential amino acid for protein synthesis. Besides, it is also employed in the regulation of major endogenous anti-oxidant molecule i.e., reduced glutathione (GSH). Further, it is a precursor of multiple sulfur-containing molecules like hydrogen sulfide, lanthionine, taurine, coenzyme A and biotin. It is also one of the key molecules for post-translational modifications of various cellular proteins. In physiological conditions, it is employed in the sulfhydration process and plays a key role in the physiology modification of the inflammatory process in various organs, including the neurological system. The catabolism of cysteine is regulated by cysteine dioxygenase enzyme activity. The dysregulated conditions of cysteine and cysteine-associated hydrogen sulfide metabolism are widely employed in the acceleration of the neurodegenerative process. Moreover, the upregulation of cysteine and hydrogen sulfide synthesis occurs via the reverse trans-sulfuration process. This process helps to manage the worsening of a pathological condition of a cellular system. Moreover, it is also employed in the accumulation of homocysteine contents. Further, both cysteine and homocysteine molecules are widely accepted as biomarkers for various types of diseases. Therefore, the targets involved in the regulation of cysteine have been considered as valid targets to treat various disorders like cardiac disease, ischemic stroke, diabetes, cancer, and renal dysfunction.
    Matched MeSH terms: Cysteine
  8. Chung LY
    J Med Food, 2006;9(2):205-13.
    PMID: 16822206
    Garlic and garlic extracts, through their antioxidant activities, have been reported to provide protection against free radical damage in the body. This study investigated antioxidant properties of garlic compounds representing the four main chemical classes, alliin, allyl cysteine, allyl disulfide, and allicin, prepared by chemical synthesis or purification. Alliin scavenged superoxide, while allyl cysteine and allyl disulfide did not react with superoxide. Allicin suppressed the formation of superoxide by the xanthine/xanthine oxidase system, probably via a thiol exchange mechanism. Alliin, allyl cysteine, and allyl disulfide all scavenged hydroxyl radicals; the rate constants calculated based on deoxyribose competitive assay were 1.4-1.7 x 10(10), 2.1-2.2 x 10(9), and 0.7-1.5 x 10(10) M (1) second(1), respectively. Contrary to previous reports, allicin did not exhibit hydroxyl radical scavenging activity in this study. Alliin, allicin, and allyl cysteine did not prevent induced microsomal lipid peroxidation, but both alliin and allyl cysteine were hydroxyl scavengers, and allyl disulfide was a lipid peroxidation terminator. In summary, our findings indicated that allyl disulfide, alliin, allicin, and allyl cysteine exhibit different patterns of antioxidant activities as protective compounds against free radical damage.
    Matched MeSH terms: Cysteine/analogs & derivatives*; Cysteine/pharmacology
  9. Campion KL, McCormick WD, Warwicker J, Khayat ME, Atkinson-Dell R, Steward MC, et al.
    J Am Soc Nephrol, 2015 Sep;26(9):2163-71.
    PMID: 25556167 DOI: 10.1681/ASN.2014070653
    The calcium-sensing receptor (CaR) modulates renal calcium reabsorption and parathyroid hormone (PTH) secretion and is involved in the etiology of secondary hyperparathyroidism in CKD. Supraphysiologic changes in extracellular pH (pHo) modulate CaR responsiveness in HEK-293 (CaR-HEK) cells. Therefore, because acidosis and alkalosis are associated with altered PTH secretion in vivo, we examined whether pathophysiologic changes in pHo can significantly alter CaR responsiveness in both heterologous and endogenous expression systems and whether this affects PTH secretion. In both CaR-HEK and isolated bovine parathyroid cells, decreasing pHo from 7.4 to 7.2 rapidly inhibited CaR-induced intracellular calcium (Ca(2+)i) mobilization, whereas raising pHo to 7.6 potentiated responsiveness to extracellular calcium (Ca(2+)o). Similar pHo effects were observed for Ca(2+)o-induced extracellular signal-regulated kinase phosphorylation and actin polymerization and for L-Phe-induced Ca(2+)i mobilization. Intracellular pH was unaffected by acute 0.4-unit pHo changes, and the presence of physiologic albumin concentrations failed to attenuate the pHo-mediated effects. None of the individual point mutations created at histidine or cysteine residues in the extracellular domain of CaR attenuated pHo sensitivity. Finally, pathophysiologic pHo elevation reversibly suppressed PTH secretion from perifused human parathyroid cells, and acidosis transiently increased PTH secretion. Therefore, pathophysiologic pHo changes can modulate CaR responsiveness in HEK-293 and parathyroid cells independently of extracellular histidine residues. Specifically, pathophysiologic acidification inhibits CaR activity, thus permitting PTH secretion, whereas alkalinization potentiates CaR activity to suppress PTH secretion. These findings suggest that acid-base disturbances may affect the CaR-mediated control of parathyroid function and calcium metabolism in vivo.
    Matched MeSH terms: Cysteine/genetics; Cysteine/metabolism
  10. Lim V, Peh KK, Sahudin S
    Int J Mol Sci, 2013;14(12):24670-91.
    PMID: 24351841 DOI: 10.3390/ijms141224670
    The use of disulphide polymers, a low redox potential responsive delivery, is one strategy for targeting drugs to the colon so that they are specifically released there. The objective of this study was to synthesise a new cross-linked disulphide-containing polymer based on the amino acid cysteine as a colon drug delivery system and to evaluate the efficiency of the polymers for colon targeted drug delivery under the condition of a low redox potential. The disulphide cross-linked polymers were synthesised via air oxidation of 1,2-ethanedithiol and 3-mercapto-N-2-(3-mercaptopropionamide)-3-mercapto propionic anhydride (trithiol monomers) using different ratio combinations. Four types of polymers were synthesised: P10, P11, P151, and P15. All compounds synthesised were characterised by NMR, IR, LC-MS, CHNS analysis, Raman spectrometry, SEM-EDX, and elemental mapping. The synthesised polymers were evaluated in chemical reduction studies that were performed in zinc/acetic acid solution. The suitability of each polymer for use in colon-targeted drug delivery was investigated in vitro using simulated conditions. Chemical reduction studies showed that all polymers were reduced after 0.5-1.0 h, but different polymers had different thiol concentrations. The bacterial degradation studies showed that the polymers were biodegraded in the anaerobic colonic bacterial medium. Degradation was most pronounced for polymer P15. This result complements the general consensus that biodegradability depends on the swellability of polymers in an aqueous environment. Overall, these results suggest that the cross-linked disulphide-containing polymers described herein could be used as coatings for drugs delivered to the colon.
    Matched MeSH terms: Cysteine/metabolism; Cysteine/chemistry*
  11. Ngu LH, Afroze B, Chen BC, Affandi O, Zabedah MY
    Singapore Med J, 2009 Oct;50(10):e365-7.
    PMID: 19907877
    Molybdenum cofactor deficiency is a rare autosomal recessive disorder with devastating neurological manifestations, characterised by neonatal-onset encephalopathy mimicking hypoxic-ischaemic insult, intractable seizure, and feeding and respiratory difficulties. It is often fatal in the early life. We report an affected 8-year-old boy, who presented with severe neurological manifestations since birth, but without clinically-significant seizure. Molybdenum cofactor deficiency must be included in the differential diagnosis of patients presenting with unexplained encephalopathy in the newborn period, and whose neuroimaging findings are consistent with hypoxic ischaemic encephalopathy. The classic laboratory hallmark of this disorder is low serum uric acid, positive urine sulphite dipstick test, and elevated urinary S-sulphocysteine, hypoxanthine and xanthine.
    Matched MeSH terms: Cysteine/analogs & derivatives; Cysteine/blood
  12. Nafi' A, Ling FH, Bakar J, Ghazali HM
    Molecules, 2014 Aug 15;19(8):12336-48.
    PMID: 25153861 DOI: 10.3390/molecules190812336
    Extraction of protease from a local ginger rhizome (Zingiber officinale var. Bentong) was carried out. The effect of extraction pH (6.4, 6.8, 7.0, 7.2, 7.6, 8.0, 8.4, and 8.8) and stabilizers (0.2% ascorbic acid, 0.2% ascorbic acid and 5 mM EDTA, or 10 mM cysteine and 5 mM EDTA) on protease activity during extraction was examined. pH 7.0 potassium phosphate buffer and 10 mM cysteine in combination with 5 mM EDTA as stabilizer were found to be the most effective conditions. The extraction procedure yielded 0.73% of Bentong ginger protease (BGP) with a specific activity of 24.8±0.2 U/mg protein. Inhibitory tests with some protease inhibitors classified the enzyme as a cysteine protease. The protease showed optimum activity at 60 °C and pH 6-8, respectively. The enzyme was completely inhibited by heavy metal cations such as Cu2+, and Hg2+. SDS stimulated the activity of enzyme, while emulsifiers (Tween 80 and Tween 20) slightly reduced its activity. The kinetic analysis showed that the protease has Km and Vmax values of 0.21 mg mL-1 and 34.48 mg mL-1 min-1, respectively. The dried enzyme retained its activity for 22 months when stored at -20 °C.
    Matched MeSH terms: Cysteine Proteases/isolation & purification; Cysteine Proteases/chemistry*
  13. Law WY, Asaruddin MR, Bhawani SA, Mohamad S
    BMC Res Notes, 2020 Nov 11;13(1):527.
    PMID: 33176880 DOI: 10.1186/s13104-020-05379-6
    OBJECTIVES: The aim of this study was to use Ligand-based pharmacophore modelling approach for four established antiviral drugs, namely remdesivir, lopinavir, ritonavir and hydroxychloroquine for COVID-19 inhibitors as training sets. In this study Twenty vanillin derivatives together with monolaurin and tetrodotoxin were used as test sets to evaluate as potential SARS-CoV-2 inhibitors. The Structure-based pharmacophore modelling approach was also performed using 5RE6, 5REX and 5RFZ in order to analyse the binding site and ligand-protein complex interactions.

    RESULTS: The pharmacophore modelling mode of 5RE6 displayed two Hydrogen Bond Acceptors (HBA) and one Hydrophobic (HY) interaction. Besides, the pharmacophore model of 5REX showed two HBA and two HY interactions. Finally, the pharmacophore model of 5RFZ showed three HBA and one HY interaction. Based on ligand-based approach, 20 Schiff-based vanillin derivatives, showed strong MPro inhibition activity. This was due to their good alignment and common features to PDB-5RE6. Similarly, monolaurin and tetrodotoxin displayed some significant activity against SARS-CoV-2. From structure-based approach, vanillin derivatives (1) to (12) displayed some potent MPro inhibition against SARS-CoV-2. Favipiravir, chloroquine and hydroxychloroquine also showed some significant MPro inhibition.

    Matched MeSH terms: Cysteine Endopeptidases; Cysteine Proteinase Inhibitors/pharmacology*; Cysteine Proteinase Inhibitors/chemistry
  14. Wong, C. W., Angel Lee, P. L.
    MyJurnal
    The inhibitory effect of onion extract on cassava leaf polyphenol oxidase was investigated. The polyphenol oxidase from cassava leaves was strongly inhibited by various anti-browning agents such as L-ascorbic acid and L-cysteine. The percentage of inhibition increased with the increased of anti-browning agents concentrations. The addition of heated onion extract exhibited a stronger inhibitory effect on cassava leaf polyphenol oxidase than the fresh onion extract. The highest percentage of inhibition was exhibited with heated onion extract in the presence of glucose and glycine, which was 87.18%. The onion extract inhibited the cassava leaf polyphenol oxidase non-competitively.
    Matched MeSH terms: Cysteine
  15. Chan SN, Abu Bakar N, Mahmood M, Ho CL, Shaharuddin NA
    Biomed Res Int, 2014;2014:973790.
    PMID: 25853138 DOI: 10.1155/2014/973790
    Phytocystatin, a type of protease inhibitor (PI), plays major roles in plant defense mechanisms and has been reported to show antipathogenic properties and plant stress tolerance. Recombinant plant PIs are gaining popularity as potential candidates in engineering of crop protection and in synthesizing medicine. It is therefore crucial to identify PI from novel sources like Curcuma longa as it is more effective in combating against pathogens due to its novelty. In this study, a novel cDNA fragment encoding phytocystatin was isolated using degenerate PCR primers, designed from consensus regions of phytocystatin from other plant species. A full-length cDNA of the phytocystatin gene, designated CypCl, was acquired using 5'/3' rapid amplification of cDNA ends method and it has been deposited in NCBI database (accession number KF545954.1). It has a 687 bp long open reading frame (ORF) which encodes 228 amino acids. BLAST result indicated that CypCl is similar to cystatin protease inhibitor from Cucumis sativus with 74% max identity. Sequence analysis showed that CypCl contains most of the motifs found in a cystatin, including a G residue, LARFAV-, QxVxG sequence, PW dipeptide, and SNSL sequence at C-terminal extension. Phylogenetic studies also showed that CypCl is related to phytocystatin from Elaeis guineensis.
    Matched MeSH terms: Cysteine Proteinase Inhibitors*
  16. Wong WK, Tan ZN, Lim BH, Mohamed Z, Olivos-Garcia A, Noordin R
    Parasitol Res, 2011 Feb;108(2):425-30.
    PMID: 20922423 DOI: 10.1007/s00436-010-2083-8
    Entamoeba histolytica is the etiologic agent for amoebiasis. The excretory-secretory (ES) products of the trophozoites contain virulence factors and antigens useful for diagnostic applications. Contaminants from serum supplements and dead trophozoites impede analysis of ES. Therefore, a protein-free medium that can sustain maximum viability of E. histolytica trophozoites for the longest time duration will enable collection of contaminant-free and higher yield of ES products. In the present study, we compared the efficacy of four types of media in maintaining ≥ 95% trophozoite viability namely Roswell Memorial Park Institute (RPMI-1640), Dulbecco's Modified Eagle Medium (DMEM), phosphate-buffered saline for amoeba (PBS-A), and Hank's balanced salt solution (HBSS). Concurrently, the effect of adding L: -cysteine and ascorbic acid (C&A) to each medium on the parasite viability was also compared. DMEM and RPMI 1640 showed higher viabilities as compared to PBS-A and HBSS. Only RPMI 1640 showed no statistical difference with the control medium for the first 4 h, however the ≥ 95% viability was only maintained for the first 2 h. The other protein-free media showed differences from the serum- and vitamin-free TYI-S-33 control media even after 1 h of incubation. When supplemented with C&A, all media were found to sustain higher trophozoite viabilities than those without the supplements. HBSS-C&A, DMEM-C&A, and RPMI 1640-C&A demonstrated no difference (P>0.05) in parasite viabilities when compared with the control medium throughout the 8-h incubation period. DMEM-C&A showed an eightfold increment in time duration of sustaining ≥ 95% parasite viability, i.e. 8 h, as compared to DMEM alone. Both RPMI 1640-C&A and HBSS-C&A revealed fourfold and threefold increments (i.e., 8 and 6 h, respectively), whereas PBS-A-C&A showed only one fold improvement (i.e., 2 h) as compared to the respective media without C&A. Thus, C&A-supplemented DMEM or RPMI are recommended for collection of ES products.
    Matched MeSH terms: Cysteine/pharmacology*
  17. Sim JH, Kamaruddin AH
    Bioresour Technol, 2008 May;99(8):2724-35.
    PMID: 17697778
    Efforts in optimizing reducing agents, cysteine-HCl.H2O and sodium sulfide in order to attain satisfactory responses during acetic acid fermentation have been carried out in this study. Cysteine-HCl.H2O each with five concentrations (0.00-0.50 g/L) was optimized one at a time and followed by sodium sulfide component (0.00-0.50 g/L). Response surface methodology (RSM) was used to determine the optimum concentrations of cysteine-HCl.H2O and sodium sulfide. The statistical analysis showed that the amount of cells produced and efficiency in CO conversion were not affected by sodium sulfide concentration. However, sodium sulfide is required as it does influence the acetic acid production. The optimum reducing agents for acetic acid fermentation was at 0.30 g/L cysteine-HCl.H2O and sodium sulfide respectively and when operated for 60 h cultivation time resulted in 1.28 g/L acetic acid production and 100% CO conversion.
    Matched MeSH terms: Cysteine/pharmacology
  18. Rajah T, Chow SC
    PLoS One, 2015;10(4):e0123711.
    PMID: 25915766 DOI: 10.1371/journal.pone.0123711
    The cathepsin B inhibitor, benzyloxycarbonyl-phenylalanine-alanine-fluoromethyl ketone (z-FA-FMK) readily inhibits anti-CD3-induced human T cell proliferation, whereas the analogue benzyloxycarbonyl-phenylalanine-alanine-diazomethyl ketone (z-FA-DMK) had no effect. In contrast, benzyloxycarbonyl-phenylalanine-alanine-chloromethyl ketone (z-FA-CMK) was toxic. The inhibition of T cell proliferation mediated by z-FA-FMK requires not only the FMK moiety, but also the benzyloxycarbonyl group at the N-terminal, suggesting some degree of specificity in z-FA-FMK-induced inhibition of primary T cell proliferation. We showed that z-FA-FMK treatment leads to a decrease in intracellular glutathione (GSH) with a concomitant increase in reactive oxygen species (ROS) levels in activated T cells. The inhibition of anti-CD3-induced T cell proliferation mediated by z-FA-FMK was abolished by the presence of low molecular weight thiols such as GSH, N-acetylcysteine (NAC) and L-cysteine, whereas D-cysteine which cannot be metabolised to GSH has no effect. The inhibition of anti-CD3-induced up-regulation of CD25 and CD69 expression mediated by z-FA-FMK was also attenuated in the presence of exogenous GSH. Similar to cell proliferation, GSH, NAC and L-cysteine but not D-cysteine, completely restored the processing of caspase-8 and caspase-3 to their respective subunits in z-FA-FMK-treated activated T cells. Our collective results demonstrated that the inhibition of T cell activation and proliferation mediated by z-FA-FMK is due to oxidative stress via the depletion of GSH.
    Matched MeSH terms: Cysteine Proteinase Inhibitors/pharmacology*
  19. Eng LI, Kamuzora H, Lehmann H
    J Med Genet, 1974 Mar;11(1):25-30.
    PMID: 4837284
    Matched MeSH terms: Cysteine/analysis*
  20. Oyeleye AO, Mohd Yusoff SF, Abd Rahim IN, Leow ATC, Saidi NB, Normi YM
    PLoS One, 2020;15(10):e0241074.
    PMID: 33091044 DOI: 10.1371/journal.pone.0241074
    Conventional refolding methods are associated with low yields due to misfolding and high aggregation rates or very dilute proteins. In this study, we describe the optimization of the conventional methods of reverse dilution and affinity chromatography for obtaining high yields of a cysteine rich recombinant glycoside hydrolase family 19 chitinase from Streptomyces griseus HUT6037 (SgChiC). SgChiC is a potential biocontrol agent and a reference enzyme in the study and development of chitinases for various applications. The overexpression of SgChiC was previously achieved by periplasmic localization from where it was extracted by osmotic shock and then purified by hydroxyapatite column chromatography. In the present study, the successful refolding and recovery of recombinant SgChiC (r-SgChiC) from inclusion bodies (IB) by reverse dilution and column chromatography methods is respectively described. Approximately 8 mg of r-SgChiC was obtained from each method with specific activities of 28 and 52 U/mg respectively. These yields are comparable to that obtained from a 1 L culture volume of the same protein isolated from the periplasmic space of E. coli BL21 (DE3) as described in previous studies. The higher yields obtained are attributed to the successful suppression of aggregation by a stepwise reduction of denaturant from high, to intermediate, and finally to low concentrations. These methods are straight forward, requiring the use of fewer refolding agents compared with previously described refolding methods. They can be applied to the refolding of other cysteine rich proteins expressed as inclusion bodies to obtain high yields of actively folded proteins. This is the first report on the recovery of actively folded SgChiC from inclusion bodies.
    Matched MeSH terms: Cysteine/chemistry
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links