Displaying publications 1 - 20 of 265 in total

Abstract:
Sort:
  1. Roesma DI, Tjong DH, Syaifullah, Aidil DR, Maulana MR, Salis VM
    Pak J Biol Sci, 2023 Nov;26(12):615-627.
    PMID: 38334154 DOI: 10.3923/pjbs.2023.615.627
    <b>Background and Objective:</b> The <i>Helarctos malayanus</i> is the sole bear species-living in Indonesia (Sumatra and Borneo). The available biological data for sun bears (<i>H. malayanus</i>) in Sumatra is limited, especially for morphological and genetic data. A morphological approach is difficult to do. Therefore, a molecular approach is the most likely choice. Phylogenetic analysis was carried out on <i>H. malayanus</i> in Central Sumatra (Dharmasraya, South Solok and Riau) using the Cytochrome B gene. <b>Materials and Methods:</b> Blood samples from three individuals of <i>H. malayanus</i> were obtained at the Sumatran Tiger Rehabilitation Center, Dharmasraya. Three <i>H. malayanus</i> Central Sumatra sequences and 62 GenBank sequences were used in the analysis. The DNA sequences were analyzed using the DNA Star, AliView, Bioedit, DNA SP, haplotype network, IQ Tree and MEGA software. <b>Results:</b> Forty-one haplotypes were identified in 65 sequences, with 17 haplotypes belonging to <i>H. malayanus</i>. Haplotype network analysis divides <i>H. malayanus</i> into Haplogroup I (Sundaland) and Haplogroup II (Mainland). All individuals of <i>H. malayanus</i> in Central Sumatra have the same haplotype as Peninsular Malaysia sequence. The sun bear (<i>H. malayanus</i>) has a monophyletic relationship with other bear species. The <i>H. malayanus</i> has a higher genetic distance between the two lineages (1.0-2.3%) than the genetic distance within the subpopulations of each lineage. <b>Conclusion:</b> The study results supported sun bear (<i>H. malayanus</i>) divided into two different lineages: Mainland (subcluster 1) and Sundaland (subcluster 2 and 3). The geographic isolation causes the absence of gene flow, which results in high genetic distance between sun bears (<i>H. malayanus</i>) in Sundaland and Mainland lineages.
    Matched MeSH terms: DNA, Mitochondrial/genetics
  2. Mohd Khair SZN, Abd Radzak SM, Mohamed Yusoff AA
    Dis Markers, 2021;2021:7675269.
    PMID: 34326906 DOI: 10.1155/2021/7675269
    Cancer is a heterogeneous group of diseases, the progression of which demands an accumulation of genetic mutations and epigenetic alterations of the human nuclear genome or possibly in the mitochondrial genome as well. Despite modern diagnostic and therapeutic approaches to battle cancer, there are still serious concerns about the increase in death from cancer globally. Recently, a growing number of researchers have extensively focused on the burgeoning area of biomarkers development research, especially in noninvasive early cancer detection. Intergenomic cross talk has triggered researchers to expand their studies from nuclear genome-based cancer researches, shifting into the mitochondria-mediated associations with carcinogenesis. Thus, it leads to the discoveries of established and potential mitochondrial biomarkers with high specificity and sensitivity. The research field of mitochondrial DNA (mtDNA) biomarkers has the great potential to confer vast benefits for cancer therapeutics and patients in the future. This review seeks to summarize the comprehensive insights of nuclear genome cancer biomarkers and their usage in clinical practices, the intergenomic cross talk researches that linked mitochondrial dysfunction to carcinogenesis, and the current progress of mitochondrial cancer biomarker studies and development.
    Matched MeSH terms: DNA, Mitochondrial/metabolism*
  3. Kuan SW, Chua KH, Tan EW, Tan LK, Loch A, Kee BP
    PeerJ, 2022;10:e13265.
    PMID: 35441061 DOI: 10.7717/peerj.13265
    Cardiomyopathy (CMP) constitutes a diverse group of myocardium diseases affecting the pumping ability of the heart. Genetic predisposition is among the major factors affecting the development of CMP. Globally, there are over 100 genes in autosomal and mitochondrial DNA (mtDNA) that have been reported to be associated with the pathogenesis of CMP. However, most of the genetic studies have been conducted in Western countries, with limited data being available for the Asian population. Therefore, this study aims to investigate the mutation spectrum in the mitochondrial genome of 145 CMP patients in Malaysia. Long-range PCR was employed to amplify the entire mtDNA, and whole mitochondrial genome sequencing was conducted on the MiSeq platform. Raw data was quality checked, mapped, and aligned to the revised Cambridge Reference Sequence (rCRS). Variants were named, annotated, and filtered. The sequencing revealed 1,077 variants, including 18 novel and 17 CMP and/or mitochondrial disease-associated variants after filtering. In-silico predictions suggested that three of the novel variants (m.8573G>C, m.11916T>A and m.11918T>G) in this study are potentially pathogenic. Two confirmed pathogenic variants (m.1555A>G and m.11778G>A) were also found in the CMP patients. The findings of this study shed light on the distribution of mitochondrial mutations in Malaysian CMP patients. Further functional studies are required to elucidate the role of these variants in the development of CMP.
    Matched MeSH terms: DNA, Mitochondrial/genetics
  4. Yang J, Chen S, Duan F, Wang X, Zhang X, Lian B, et al.
    Cells, 2022 Nov 06;11(21).
    PMID: 36359908 DOI: 10.3390/cells11213511
    Mitochondrial cardiomyopathy (MCM) is characterized by abnormal heart-muscle structure and function, caused by mutations in the nuclear genome or mitochondrial DNA. The heterogeneity of gene mutations and various clinical presentations in patients with cardiomyopathy make its diagnosis, molecular mechanism, and therapeutics great challenges. This review describes the molecular epidemiology of MCM and its clinical features, reviews the promising diagnostic tests applied for mitochondrial diseases and cardiomyopathies, and details the animal and cellular models used for modeling cardiomyopathy and to investigate disease pathogenesis in a controlled in vitro environment. It also discusses the emerging therapeutics tested in pre-clinical and clinical studies of cardiac regeneration.
    Matched MeSH terms: DNA, Mitochondrial/genetics
  5. Low HC, Chilian WM, Ratnam W, Karupaiah T, Md Noh MF, Mansor F, et al.
    Br J Biomed Sci, 2023;80:10884.
    PMID: 36866104 DOI: 10.3389/bjbs.2023.10884
    Type 2 Diabetes Mellitus is a major chronic metabolic disorder in public health. Due to mitochondria's indispensable role in the body, its dysfunction has been implicated in the development and progression of multiple diseases, including Type 2 Diabetes mellitus. Thus, factors that can regulate mitochondrial function, like mtDNA methylation, are of significant interest in managing T2DM. In this paper, the overview of epigenetics and the mechanism of nuclear and mitochondrial DNA methylation were briefly discussed, followed by other mitochondrial epigenetics. Subsequently, the association between mtDNA methylation with T2DM and the challenges of mtDNA methylation studies were also reviewed. This review will aid in understanding the impact of mtDNA methylation on T2DM and future advancements in T2DM treatment.
    Matched MeSH terms: DNA, Mitochondrial/genetics
  6. Bizhanova N, Nanova O, Fadakar D, Grachev A, Hong Z, Mohd Sah SA, et al.
    Sci Rep, 2024 Mar 02;14(1):5186.
    PMID: 38431728 DOI: 10.1038/s41598-024-55807-x
    The Eurasian lynx (Lynx lynx) exhibits geographic variability and phylogenetic intraspecific relationships. Previous morphological studies have suggested the existence of multiple lynx subspecies, but recent genetic research has questioned this classification, particularly in Central Asia. In this study, we aimed to analyse the geographic and genetic variation in Central Asian lynx populations, particularly the Turkestan lynx and Altai lynx populations, using morphometric data and mtDNA sequences to contribute to their taxonomic classification. The comparative analysis of morphometric data revealed limited clinal variability between lynx samples from the Altai and Tien Shan regions. By examining mtDNA fragments (control region and cytochrome b) obtained from Kazakhstani lynx populations, two subspecies were identified: L. l. isabellinus (represented by a unique haplotype of the South clade, H46) and L. l. wrangeli (represented by haplotypes H36, H45, and H47 of the East clade). L. l. isabellinus was recognized only in Tien Shan Mountain, while Altai lynx was likely identical to L. l. wrangeli and found in northern Kazakhstan, Altai Mountain, Saur and Tarbagatai Mountains, and Tien Shan Mountain. The morphological and mtDNA evidence presented in this study, although limited in sample size and number of genetic markers, renders the differentiation of the two subspecies challenging. Further sampling and compilation of whole-genome sequencing data are necessary to confirm whether the proposed subspecies warrant taxonomic standing.
    Matched MeSH terms: DNA, Mitochondrial/genetics
  7. Gan HM, Tan MH, Thai BT, Austin CM
    PMID: 24617474 DOI: 10.3109/19401736.2014.892104
    The complete mitochondrial genome of the commercially important snout otter clam Lutraria rhynchaena was obtained from low-coverage shotgun sequencing data on the MiSeq platform. The L. rhynchaena mitogenome has 16,927 base pairs (69% A + T content) and made up of 12 protein-coding genes, 2 ribosomal subunit genes, 22 transfer RNAs, and a 953 bp non-coding AT-rich region. This is the first mitogenome to be sequenced from the genus Lutraria, and the seventh to be reported for the family Mactridae.
    Matched MeSH terms: DNA, Mitochondrial/analysis; DNA, Mitochondrial/genetics
  8. Lim LWK, Kamar CKA, Roja JS, Chung HH, Liao Y, Lam TT, et al.
    Comput Biol Chem, 2020 Dec;89:107403.
    PMID: 33120127 DOI: 10.1016/j.compbiolchem.2020.107403
    The Blueline Rasbora (Rasbora sarawakensis) is a small ray-finned fish categorized under the genus Rasbora in the Cyprinidae family. In this study, the complete mitogenome sequence of R. sarawakensis was sequenced using four primers targeting overlapping regions. The mitogenome is 16,709 bp in size, accommodating 22 transfer RNA genes, 13 protein-coding genes, two ribosomal RNA genes and a putative control region. Identical gene organisation was detected between this species and other genus counterparts. The heavy strand houses 28 genes while the light strand stores the other nine genes. Most protein-coding genes employ ATG as start codon, excluding COI gene, which utilizes GTG instead. The central conserved sequence blocks (CSB-F, CSB-E and CSB-D), variable sequence blocks (CSB-3, CSB-2 and CSB-1) as well as the terminal associated sequence (TAS) are conserved in the control region. The maximum likelihood phylogenetic tree revealed the divergence of R. sarawakensis from the basal region of the Rasbora clade, where its evolutionary relationships with R. maculatus and R. pauciperforata are poorly resolved as indicated by the low bootstrap values. This work acts as steppingstone towards further molecular evolution and population genetics studies of Rasbora genus in future.
    Matched MeSH terms: DNA, Mitochondrial/analysis*; DNA, Mitochondrial/genetics
  9. Durairajanayagam D, Singh D, Agarwal A, Henkel R
    Andrologia, 2021 Feb;53(1):e13666.
    PMID: 32510691 DOI: 10.1111/and.13666
    Mitochondria have multiple functions, including synthesis of adenine triphosphate, production of reactive oxygen species, calcium signalling, thermogenesis and apoptosis. Mitochondria have a significant contribution in regulating the various physiological aspects of reproductive function, from spermatogenesis up to fertilisation. Mitochondrial functionality and intact mitochondrial membrane potential are a pre-requisite for sperm motility, hyperactivation, capacitation, acrosin activity, acrosome reaction and DNA integrity. Optimal mitochondrial activity is therefore crucial for human sperm function and semen quality. However, the precise role of mitochondria in spermatozoa remains to be fully explored. Defects in sperm mitochondrial function severely impair the maintenance of energy production required for sperm motility and may be an underlying cause of asthenozoospermia. Sperm mtDNA is susceptible to oxidative damage and mutations that could compromise sperm function leading to infertility. Males with abnormal semen parameters have increased mtDNA copy number and reduced mtDNA integrity. This review discusses the role of mitochondria in sperm function, along with the causes and impact of its dysfunction on male fertility. Greater understanding of sperm mitochondrial function and its correlation with sperm quality could provide further insights into their contribution in the assessment of the infertile male.
    Matched MeSH terms: DNA, Mitochondrial/genetics; DNA, Mitochondrial/metabolism
  10. Jamsari AF, Muchlisin ZA, Musri M, Siti Azizah MN
    Genet. Mol. Res., 2010;9(3):1836-43.
    PMID: 20845309 DOI: 10.4238/vol9-3gmr933
    Anabas testudineus (Anabantidae) is an important food fish in Southeast Asia. We analyzed the mitochondrial DNA control region sequence data to evaluate the genetic variability and population structure of this species. Sixty specimens were collected from four populations in Sumatra and two populations in Peninsular Malaysia. We found a very low level of genetic variability, with five of the six populations exhibiting total absence of genetic variation. Based on analysis of molecular variance, 84.72% of the total variation was among populations and 15.28% within populations. A geographical division based on FST values indicated highly significant genetic differentiation among populations from the four drainage systems: Aceh, Sumatra Utara, Pulau Pinang, and Terengganu (FST ranging from 0.633 to 1.000). No phylogeographic relationships among populations were detected, despite the generation of four distinct clades in a neighbor-joining phylogenetic tree.
    Matched MeSH terms: DNA, Mitochondrial/genetics*
  11. Chen W, Zhang J, Geng Z, Zhu D
    Yi Chuan Xue Bao, 1994;21(3):179-87.
    PMID: 7917431
    We report the fact that D. albomicans invaded into Shanghai suddenly in the autumn of 1991. Using 9 restriction enzymes, we analyse the RFLPs of mitochondrial DNA of 29 isofemale lines belonging to 4 populations of Shanghai, Jiading, Qinpu and Nanhui. We find that all 29 haplotypes are different from each other. Comparing with the populations of Canton, Kunming, Sanhutan (Taiwan), Sumoto (Japan), and Kuala Lumper (Malaysia), we come to the conclusion that D. albomicans caught in Shanghai and areas nearby is from a few of places in the south of China-mainland. This conclusion agrees with the viewpoint that this species is on the speciation stage of migration towards north. We also discuss the mtDNA polymorphism within the species.
    Matched MeSH terms: DNA, Mitochondrial/genetics*
  12. Soon BH, Abu N, Abdul Murad NA, Then SM, Abu Bakar A, Fadzil F, et al.
    Per Med, 2022 01;19(1):25-39.
    PMID: 34873928 DOI: 10.2217/pme-2021-0033
    Aim: Mitochondrial DNA (mtDNA) alterations play an important role in the multistep processes of cancer development. Gliomas are among the most diagnosed brain cancer. The relationship between mtDNA alterations and different grades of gliomas are still elusive. This study aimed to elucidate the profile of somatic mtDNA mutations in different grades of gliomas and correlate it with clinical phenotype. Materials & methods: Forty histopathologically confirmed glioma tissue samples and their matched blood were collected and subjected for mtDNA sequencing. Results & conclusion: About 75% of the gliomas harbored at least one somatic mutation in the mtDNA gene, and 45% of these mutations were pathogenic. Mutations were scattered across the mtDNA genome, and the commonest nonsynonymous mutations were located at complex I and IV of the mitochondrial respiratory chain. These findings may have implication for future research to determine the mitochondrial energetics and its downstream metabolomics on gliomas.
    Matched MeSH terms: DNA, Mitochondrial/genetics
  13. Salis AT, Bray SCE, Lee MSY, Heiniger H, Barnett R, Burns JA, et al.
    Mol Ecol, 2022 Dec;31(24):6407-6421.
    PMID: 34748674 DOI: 10.1111/mec.16267
    The Bering Land Bridge connecting North America and Eurasia was periodically exposed and inundated by oscillating sea levels during the Pleistocene glacial cycles. This land connection allowed the intermittent dispersal of animals, including humans, between Western Beringia (far northeast Asia) and Eastern Beringia (northwest North America), changing the faunal community composition of both continents. The Pleistocene glacial cycles also had profound impacts on temperature, precipitation and vegetation, impacting faunal community structure and demography. While these palaeoenvironmental impacts have been studied in many large herbivores from Beringia (e.g., bison, mammoths, horses), the Pleistocene population dynamics of the diverse guild of carnivorans present in the region are less well understood, due to their lower abundances. In this study, we analyse mitochondrial genome data from ancient brown bears (Ursus arctos; n = 103) and lions (Panthera spp.; n = 39), two megafaunal carnivorans that dispersed into North America during the Pleistocene. Our results reveal striking synchronicity in the population dynamics of Beringian lions and brown bears, with multiple waves of dispersal across the Bering Land Bridge coinciding with glacial periods of low sea levels, as well as synchronous local extinctions in Eastern Beringia during Marine Isotope Stage 3. The evolutionary histories of these two taxa underline the crucial biogeographical role of the Bering Land Bridge in the distribution, turnover and maintenance of megafaunal populations in North America.
    Matched MeSH terms: DNA, Mitochondrial/genetics
  14. Ibrahim AH, Rahman NNA, Saifuddeen SM
    J Bioeth Inq, 2023 Sep;20(3):485-495.
    PMID: 37440155 DOI: 10.1007/s11673-023-10279-y
    Mitochondrial replacement technology (MRT) is an emerging and complex bioethical issue. This treatment aims to eliminate maternal inherited mitochondrial DNA (mtDNA) disorders. For Muslims, its introduction affects every aspect of human life, especially the five essential interests of human beings-namely, religion, life, lineage, intellect, and property. Thus, this technology must be assessed using a comprehensive and holistic approach addressing these human essential interests. Consequently, this article analyses and assesses tri-parent baby technology from the perspective of Maqasidic bioethics-that is, Islamic bioethics based on the framework of Maqasid al-Shariah. Using this analysis, this article suggests that tri-parent baby technology should not be permitted for Muslims due to the existence of third-party cell gametes which lead to lineage mixing and due to the uncertain safety of the therapy itself and because the major aim of the technology is to fulfil the affected couples interest to conceive their own genetically healthy child, not to treat and cure mtDNA disorders sufferers.
    Matched MeSH terms: DNA, Mitochondrial/genetics
  15. Fam YQ, Jamaluddin JAF, Muhammad-Rasul AH, Ilham-Norhakim ML, Rosely NFN, Lavoué S
    J Fish Biol, 2024 Jan;104(1):171-183.
    PMID: 37775959 DOI: 10.1111/jfb.15572
    The variability in the stenotopic miniature rasborine Boraras maculatus (Cypriniformes: Danionidae: Rasborinae) across acidic-water habitats of Peninsular Malaysia (PM) was investigated using two molecular markers (the mitochondrial cytochrome c oxidase subunit I [COI] gene and the nuclear rhodopsin gene), as well as morphological evidence. Molecular phylogenetic analyses revealed differentiation among populations of B. maculatus in PM with the distinction of four allopatric lineages. Each of them was recognized as a putative species by automatic species delimitation methods. These lineages diverged from each other between 7.4 and 1.9 million years ago. A principal component analysis (PCA) was conducted to examine the multivariate variation in 11 morphometric measurements among three of these lineages. PCA results showed a significant overlap in morphological characteristics among these lineages. Additionally, a photograph-based machine learning approach failed to fully differentiate these lineages, suggesting limited morphological differentiation. B. maculatus represents a case of morphological stasis in a stenotopic miniature species. Strong habitat preference, coupled with long-term habitat fragmentation, may explain why each lineage of B. maculatus has a restricted distribution and did not disperse to other regions within and outside of PM, despite ample possibilities when the Sunda shelf was emerged and drained by large paleodrainages for most of the past 7 million years. The conservation status of B. maculatus and its peat swamp habitats are discussed, and it is concluded that peat swamps comprise several evolutionary units. Each of these units is considered a conservation unit and deserves appropriate protection.
    Matched MeSH terms: DNA, Mitochondrial/genetics
  16. Wakamiya T, Tingek S, Okuyama H, Kiyoshi T, Takahashi JI
    Mitochondrial DNA B Resour, 2017 Jan 17;2(1):24-25.
    PMID: 33490434 DOI: 10.1080/23802359.2016.1275847
    In this study, we analyzed the complete mitochondrial genome of the cavity-nesting honeybee, A. koschevnikovi. The mitochondrial genome of A. koschevnikovi was observed to be a circular molecule of 15,278 bp and was similar to that of the other cavity-nesting honeybee species. The average AT content in the A. koschevnikovi mitochondrial genome was 84%. It was predicted to contain 13 protein-coding, 24 tRNA and two rRNA genes, along with one A + T-rich control region, besides three tRNA-Met repeats.
    Matched MeSH terms: DNA, Mitochondrial
  17. Gray HWI, Nishida S, Welch AJ, Moura AE, Tanabe S, Kiani MS, et al.
    Mol Phylogenet Evol, 2018 05;122:1-14.
    PMID: 29294405 DOI: 10.1016/j.ympev.2017.12.027
    Phylogeography can provide insight into the potential for speciation and identify geographic regions and evolutionary processes associated with species richness and evolutionary endemism. In the marine environment, highly mobile species sometimes show structured patterns of diversity, but the processes isolating populations and promoting differentiation are often unclear. The Delphinidae (oceanic dolphins) are a striking case in point and, in particular, bottlenose dolphins (Tursiops spp.). Understanding the radiation of species in this genus is likely to provide broader inference about the processes that determine patterns of biogeography and speciation, because both fine-scale structure over a range of kilometers and relative panmixia over an oceanic range are known for Tursiops populations. In our study, novel Tursiops spp. sequences from the northwest Indian Ocean (including mitogenomes and two nuDNA loci) are included in a worldwide Tursiops spp. phylogeographic analysis. We discover a new 'aduncus' type lineage in the Arabian Sea (off India, Pakistan and Oman) that diverged from the Australasian lineage ∼261 Ka. Effective management of coastal dolphins in the region will need to consider this new lineage as an evolutionarily significant unit. We propose that the establishment of this lineage could have been in response to climate change during the Pleistocene and show data supporting hypotheses for multiple divergence events, including vicariance across the Indo-Pacific barrier and in the northwest Indian Ocean. These data provide valuable transferable inference on the potential mechanisms for population and species differentiation across this geographic range.
    Matched MeSH terms: DNA, Mitochondrial/classification; DNA, Mitochondrial/genetics; DNA, Mitochondrial/chemistry
  18. Saadi S, Nacer NE, Saari N, Mohammed AS, Anwar F
    J Biotechnol, 2024 Mar 10;383:1-12.
    PMID: 38309588 DOI: 10.1016/j.jbiotec.2024.01.013
    The attempt of this review article is to determine the impact of nuclear and mitochondrial damages on the propagation of cancer incidences. This review has advanced our understanding to altered genes and their relevant cancerous proteins. The progressive raising effects of free reactive oxygen species ROS and toxicogenic compounds contributed to significant mutation in nuclear and mitochondrial DNA where the incidence of gastric cancer is found to be linked with down regulation of some relevant genes and mutation in some important cellular proteins such as AMP-18 and CA-11. Thereby, the resulting changes in gene mutations induced the apparition of newly polymorphisms eventually leading to unusual cellular expression to mutant proteins. Reduction of these apoptotic growth factors and nuclear damages is increasingly accepted by cell reactivation effect, enhanced cellular signaling and DNA repairs. Acetylation, glycation, pegylation and phosphorylation are among the molecular techniques used in DNA repair for rectifying mutation incidences. In addition, the molecular labeling based fluorescent materials are currently used along with the bioconjugating of signal molecules in targeting disease translocation site, particularly cancers and tumors. These strategies would help in determining relevant compounds capable in overcoming problems of down regulating genes responsible for repair mechanisms. These issues of course need interplay of both proteomic and genomic studies often in combination of molecular engineering to cible the exact expressed gene relevant to these cancerous proteins.
    Matched MeSH terms: DNA, Mitochondrial
  19. Gan HM, Tan MH, Lee YP, Schultz MB, Horwitz P, Burnham Q, et al.
    Mol Phylogenet Evol, 2018 01;118:88-98.
    PMID: 28966124 DOI: 10.1016/j.ympev.2017.09.022
    To further understand the evolutionary history and mitogenomic features of Australia's highly distinctive freshwater crayfish fauna, we utilized a recently described rapid mitogenome sequencing pipeline to generate 24 new crayfish mitogenomes including a diversity of burrowing crayfish species and the first for Astacopsis gouldi, the world's largest freshwater invertebrate. Whole mitogenome-based phylogeny estimates using both Bayesian and Maximum Likelihood methods substantially strengthen existing hypotheses for systematic relationships among Australian freshwater crayfish with evidence of pervasive diversifying selection and accelerated mitochondrial substitution rate among the members of the clade representing strongly burrowing crayfish that may reflect selection pressures for increased energy requirement for adaptation to terrestrial environment and a burrowing lifestyle. Further, gene rearrangements are prevalent in the burrowing crayfish mitogenomes involving both tRNA and protein coding genes. In addition, duplicated control regions were observed in two closely related Engaeus species, together with evidence for concerted evolution. This study significantly adds to the understanding of Australian freshwater crayfish evolutionary relationships and suggests a link between mitogenome evolution and adaptation to terrestrial environments and a burrowing lifestyle in freshwater crayfish.
    Matched MeSH terms: DNA, Mitochondrial/classification; DNA, Mitochondrial/genetics*; DNA, Mitochondrial/metabolism; DNA, Mitochondrial/chemistry
  20. Tan MH, Gan HM, Lee YP, Austin CM
    PMID: 25423512 DOI: 10.3109/19401736.2014.982587
    The mitochondrial genome sequence of the ghost crab, Ocypode ceratophthalmus, is documented (GenBank accession number: LN611669) in this article. This is the first mitogenome for the family Ocypodidae and the second for the order Ocypodoidea. Ocypode ceratophthalmus has a mitogenome of 15,564 base pairs consisting of 13 protein-coding genes, two ribosomal subunit genes, 22 transfer RNAs and a non-coding AT-rich region. The base composition of the O. ceratophthalmus mitogenome is 35.78% for T, 19.36% for C, 33.73% for A and 11.13% for G, with an AT bias of 69.51% and the gene order is the typical arrangement for brachyuran crabs.
    Matched MeSH terms: DNA, Mitochondrial/genetics
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links