Displaying publications 1 - 20 of 25 in total

Abstract:
Sort:
  1. Hemavarshini S, Kalyaan VLV, Gopinath S, Kamaraj M, Aravind J, Pandiaraj S, et al.
    Environ Geochem Health, 2024 Aug 21;46(10):386.
    PMID: 39167247 DOI: 10.1007/s10653-024-02154-5
    In the era dominated by plastic, the widespread use of plastic in our daily lives has led to a growing accumulation of its degraded byproducts, such as microplastics and plastic additives like Bisphenol A (BPA). BPA is recognized as one of the earliest man-made substances that exhibit endocrine-disrupting properties. It is frequently employed in the manufacturing of epoxy resins, polycarbonates, dental fillings, food storage containers, infant bottles, and water containers. BPA is linked to a range of health issues including obesity, diabetes, chronic respiratory illnesses, cardiovascular diseases, and reproductive abnormalities. This study examines the bacterial bioremediation of the BPA, which is found in many sources and is known for its hazardous effects on the environment. The metabolic pathways for the breakdown of BPA in important bacterial strains were hypothesized based on the observed altered intermediate metabolites during the degradation of BPA. This review discusses the enzymes and genes involved in the bacterial degradation of BPA. The utilization of naturally occurring microorganisms is the most efficient and cost-effective method due to their selectivity of strains, ensuring sustainability.
    Matched MeSH terms: Environmental Pollutants/metabolism
  2. Salim YS, Sharon A, Vigneswari S, Mohamad Ibrahim MN, Amirul AA
    Appl Biochem Biotechnol, 2012 May;167(2):314-26.
    PMID: 22544728 DOI: 10.1007/s12010-012-9688-6
    This paper investigates the degradation of polyhydroxyalkanoates and its biofiber composites in both soil and lake environment. Time-dependent changes in the weight loss of films were monitored. The rate of degradation of poly(3-hydroxybutyrate) [P(3HB)], poly(3-hydroxybutyrate-co-4-hydroxybutyrate) [P(3HB-co-23 mol% 4HB)] and poly(3-hydroxybutyrate-co-3-hydroxyvalerate-co-4-hydroxybutyrate) [P(3HB-co-9 mol% 3HV-co-19 mol% 4HB)] were investigated. The rate of degradation in the lake is higher compared to that in the soil. The highest rate of degradation in lake environment (15.6% w/w week(-1)) was observed with P(3HB-co-3HV-co-4HB) terpolymer. Additionally, the rate of degradation of poly(3-hydroxybutyrate-co-3-hydroxyvalerate) [P(3HB-co-38 mol% 3HV)] was compared to PHBV biofiber composites containing compatibilizers and empty fruit bunch (EFB). Here, composites with 30% EFB displayed the highest rate of degradation both in the lake (25.6% w/w week(-1)) and soil (15.6% w/w week(-1)) environment.
    Matched MeSH terms: Environmental Pollutants/metabolism*
  3. Yunus SM, Hamim HM, Anas OM, Aripin SN, Arif SM
    Pol J Microbiol, 2009;58(2):141-7.
    PMID: 19824398
    In this work we report on the isolation of a local molybdenum-reducing bacterium. The bacterium reduced molybdate or Mo(6+) to molybdenum blue (oxidation states between 5+ to 6+). Electron donors that supported cellular growth were sucrose, maltose, mannitol, fructose, glucose and starch (in decreasing order) with sucrose supporting formation of the highest amount of molybdenum blue at 10 g/l after 24 hours of static incubation. The optimum molybdate and phosphate concentrations that supported molybdate reduction were 20 and 5 mM, respectively. Molybdate reduction was optimal at 37 degrees C. The molybdenum blue produced from cellular reduction exhibited a unique absorption spectrum with a maximum peak at 865 nm and a shoulder at 700 nm. The isolate was tentatively identified as S. marcescens strain Dr.Y9 based on carbon utilization profiles using Biolog GN plates and partial 16S rDNA molecular phylogeny. No inhibition of molybdenum-reducing activity was seen using electron transport system (ETS) inhibitors such as antimycin A, 1HQNO (Hydroxyquinoline-N-Oxide), sodium azide and cyanide suggesting that the ETS of this bacterium is not the site of molybdate reduction.
    Matched MeSH terms: Environmental Pollutants/metabolism
  4. Halmi MI, Hussin WS, Aqlima A, Syed MA, Ruberto L, MacCormack WP, et al.
    J Environ Biol, 2013 Nov;34(6):1077-82.
    PMID: 24555340
    A bacterium capable of biodegrading surfactant sodium dodecyl sulphate (SDS) was isolated from Antarctic soil. The isolate was tentatively identified as Pseudomonas sp. strain DRY15 based on carbon utilization profiles using Biolog GN plates and partial 16S rDNA molecular phylogeny. Growth characteristic studies showed that the bacterium grew optimally at 10 degrees C, 7.25 pH, 1 g l(-1) SDS as a sole carbon source and 2 g l(-1) ammonium sulphate as nitrogen source. Growth was completely inhibited at 5 g l(-1) SDS. At a tolerable initial concentration of 2 g l(-1), approximately 90% of SDS was degraded after an incubation period of eight days. The best growth kinetic model to fit experimental data was the Haldane model of substrate inhibition with a correlation coefficient value of 0.97. The maximum growth rate was 0.372 hr(-1) while the saturation constant or half velocity constant (Ks) and inhibition constant (Ki), were 0.094% and 11.212 % SDS, respectively. Other detergent tested as carbon sources at 1 g l(-1) was Tergitol NP9, Tergitol 15S9, Witconol 2301 (methyl oleate), sodium dodecylbenzene sulfonate (SDBS), benzethonium chloride, and benzalkonium chloride showed Tergitol NP9, Tergitol 15S9, Witconol 2301 and the anionic SDBS supported growth with the highest growth exhibited by SDBS.
    Matched MeSH terms: Environmental Pollutants/metabolism*
  5. Ghazali AR, Abdul Razak NE, Othman MS, Othman H, Ishak I, Lubis SH, et al.
    J Environ Public Health, 2012;2012:758349.
    PMID: 22536276 DOI: 10.1155/2012/758349
    Heavy metals, particularly cadmium, lead, and arsenic, constitute a significant potential threat to human health. This study was conducted to determine the levels of cadmium, lead, and arsenic in nail samples from farmers at Muda Agricultural Development Authority (MADA), Kedah, Malaysia, and evaluate factors that can contribute to their accumulations. A total of 116 farmers participated in this study. Inductively coupled plasma mass spectrometry (ICP-MS) was used to analyze concentration of heavy metals in the nail samples and questionnaires were given to participants to get demographic, health status, and their agricultural activities data. In this paper, the level of heavy metals was within the normal range and varies according to demographic factors. We found that there were significant correlations between working period with level of lead and arsenic (r=0.315 and r=0.242, resp., P<0.01) and age with lead level (r=0.175, P<0.05). Our findings suggested that agricultural activities could contribute to the accumulation of heavy metals in farmers. Hence, the control of environmental levels of and human exposure to these metals to prevent adverse health effects is still an important public health issue.
    Matched MeSH terms: Environmental Pollutants/metabolism*
  6. Hadibarata T, Kristanti RA
    Bioprocess Biosyst Eng, 2013 Apr;36(4):461-8.
    PMID: 22893180 DOI: 10.1007/s00449-012-0803-4
    Armillaria sp. F022 is a white-rot fungus isolated from a tropical rain forest in Indonesia that is capable of utilizing pyrene as a source of carbon and energy. Enzymes production during the degradation process by Armillaria sp. F022 was certainly related to the increase in biomass. In the first week after incubation, the growth rate rapidly increased, but enzyme production decreased. After 7 days of incubation, rapid growth was observed, whereas, the enzymes were produced only after a good amount of biomass was generated. About 63 % of pyrene underwent biodegradation when incubated with this fungus in a liquid medium on a rotary shaker (120 rpm, 25 °C) for 30 days; during this period, pyrene was transformed to five stable metabolic products. These metabolites were extracted in ethyl acetate, isolated by column chromatography, and then identified using thin layer chromatography (TLC) and gas chromatography-mass spectrometry (GC-MS). 1-Hydroxypyrene was directly identified by GC-MS, while 4-phenanthroic acid, 1-hydroxy-2-naphthoic acid, phthalic acid, and protocatechuic acid were identified to be present in their derivatized forms (methylated forms and silylated forms). Protocatechuic acid was the end product of pyrene degradation by Armillaria sp. F022. Dynamic profiles of two key enzymes, namely laccase and 1,2-dioxygenase, were revealed during the degradation process, and the results indicated the presence of a complicated mechanism in the regulation of pyrene-degrading enzymes. In conclusion, Armillaria sp. F022 is a white-rot fungus with potential for application in the degradation of polycyclic aromatic hydrocarbons such as pyrene in the environment.
    Matched MeSH terms: Environmental Pollutants/metabolism*
  7. Hadibarata T, Kristanti RA
    J Environ Manage, 2012 Nov 30;111:115-9.
    PMID: 22835655 DOI: 10.1016/j.jenvman.2012.06.044
    The biodegradation of benzo[a]pyrene (BaP) by using Polyporus sp. S133, a white-rot fungus isolated from oil-contaminated soil was investigated. Approximately 73% of the initial concentration of BaP was degraded within 30 d of incubation. The isolation and characterization of 3 metabolites by thin layer chromatography, column chromatography, and UV-vis spectrophotometry in combination with gas chromatography-mass spectrometry, indicated that Polyporus sp. S133 transformed BaP to BaP-1,6-quinone. This quinone was further degraded in 2 ways. First, BaP-1,6-quinone was decarboxylated and oxidized to form coumarin, which was then hydroxylated to hydroxycoumarin, and finally to hydroxyphenyl acetic acid by addition of an epoxide group. Second, Polyporus sp. S133 converted BaP-1,6-quinone into a major product, 1-hydroxy-2-naphthoic acid. During degradation, free extracellular laccase was detected with reduced activity of lignin peroxidase, manganese-dependent peroxidase and 2,3-dioxygenase, suggesting that laccase and 1,2-dioxygenase might play an important role in the transformation of PAHs compounds.
    Matched MeSH terms: Environmental Pollutants/metabolism*
  8. Hadibarata T, Kristanti RA
    Bioresour Technol, 2012 Mar;107:314-8.
    PMID: 22209445 DOI: 10.1016/j.biortech.2011.12.046
    Armillaria sp. F022, a white-rot fungus isolated from a tropical rain forest in Samarinda, Indonesia, was used to biodegrade benzo[a]pyrene (BaP). Transformation of BaP, a 5-ring polycyclic aromatic hydrocarbon (PAH), by Armillaria sp. F022, which uses BaP as a source of carbon and energy, was investigated. However, biodegradation of BaP has been limited because of its bioavailability and toxicity. Five cosubstrates were selected as cometabolic carbon and energy sources. The results showed that Armillaria sp. F022 used BaP with and without cosubstrates. A 2.5-fold increase in degradation efficiency was achieved after addition of glucose. Meanwhile, the use of glucose as a cosubstrate could significantly stimulate laccase production compared with other cosubstrates and not using any cosubstrate. The metabolic pathway was elucidated by identifying metabolites, conducting biotransformation studies, and monitoring enzyme activities in cell-free extracts. The degradation mechanism was determined through the identification of several metabolites: benzo[a]pyrene-1,6-quinone, 1-hydroxy-2-benzoic acid, and benzoic acid.
    Matched MeSH terms: Environmental Pollutants/metabolism*
  9. Shukor MY, Gusmanizar N, Ramli J, Shamaan NA, MacCormack WP, Syed MA
    J Environ Biol, 2009 Jan;30(1):107-12.
    PMID: 20112871
    The presence of acrylamide in the environment poses a threat due to its well known neurotoxic, carcinogenic and teratogenic properties. Human activities in various geographical areas are the main anthropogenic source of acrylamide pollution. In this work, an acrylamide-degrading bacterium was isolated from Antarctic soil. The physiological characteristics and optimum growth conditions of the acrylamide-degrading bacteria were investigated. The isolate was tentatively identified as Pseudomonas sp. strain DRYJ7 based on carbon utilization profiles using Biolog GN plates and partial 16S rDNA molecular phylogeny. The results showed that the best carbon sources for growth was glucose and sucrose with no significant difference in terms of cellular growth between the two carbon sources (p>0.05). This was followed by fructose and maltose with fructose giving significantly higher cellular growth compared to maltose (p<0.05). Lactose and citric acid did not support growth. The optimum acrylamide concentration as a nitrogen source for cellular growth was at 500 mgl(-1). At this concentration, bacterial growth showed a 2-day lag phase before degradation took place concomitant with an increase in cellular growth. The isolate exhibited optimum growth in between pH 7.5 and 8.5. The effect of incubation temperature on the growth of this isolate showed an optimum growth at 15 degrees C. The characteristics of this isolate suggest that it would be useful in the bioremediation of acrylamide.
    Matched MeSH terms: Environmental Pollutants/metabolism*
  10. Syed MA, Sim HK, Khalid A, Shukor MY
    J Environ Biol, 2009 Jan;30(1):89-92.
    PMID: 20112868
    A stab-culture method was adapted to screen for azo dyes-decolorizing bacteria from soil and water samples. Decolorized azo dye in the lower portion of the solid media indicates the presence of anaerobic azo dyes-decolorizing bacteria, while aerobic decolorizing bacteria decolorizes the surface portion of the solid media. Of twenty soil samples tested, one soil sample shows positive results for the decolourisation of two azo dyes; Biebrich scarlet (BS) and Direct blue 71 (DB) under anaerobic conditions. A gram negative and oxidase negative bacterial isolate was found to be the principal azo dyes degrader The isolate was identified by using the Biolog identification system as Serratia marcescens.
    Matched MeSH terms: Environmental Pollutants/metabolism*
  11. Rahman MF, Shukor MY, Suhaili Z, Mustafa S, Shamaan NA, Syed MA
    J Environ Biol, 2009 Jan;30(1):65-72.
    PMID: 20112865
    The need to isolate efficient heavy metal reducers for cost effective bioremediation strategy have resulted in the isolation of a potent molybdenum-reducing bacterium. The isolate was tentatively identified as Serratia sp. strain DRY5 based on the Biolog GN carbon utilization profiles and partial 16S rDNA molecular phylogeny. Strain DRY5 produced 2.3 times the amount of Mo-blue than S. marcescens strain Dr.Y6, 23 times more than E. coli K12 and 7 times more than E. cloacae strain 48. Strain DRY5 required 37 degrees C and pH 7.0 for optimum molybdenum reduction. Carbon sources such as sucrose, maltose, glucose and glycerol, supported cellular growth and molybdate reduction after 24 hr of static incubation. The most optimum carbon source that supported reduction was sucrose at 1.0% (w/v). Ammonium sulphate, ammonium chloride, glutamic acid, cysteine, and valine supported growth and molybdate reduction with ammonium sulphate as the optimum nitrogen source at 0. 2% (w/v). Molybdate reduction was optimally supported by 30 mM molybdate. The optimum concentration of phosphate for molybdate reduction was 5 mM when molybdate concentration was fixed at 30 mM and molybdate reduction was totally inhibited at 100 mM phosphate. Mo-blue produced by this strain shows a unique characteristic absorption profile with a maximum peak at 865 nm and a shoulder at 700 nm, Dialysis tubing experiment showed that 95.42% of Mo-blue was found in the dialysis tubing suggesting that the molybdate reduction seen in this bacterium was catalyzed by enzyme(s). The characteristics of isolate DRY5 suggest that it would be useful in the bioremediation ofmolybdenum-containing waste.
    Matched MeSH terms: Environmental Pollutants/metabolism*
  12. Kamaruzzaman BY, Ong MC, Jalal KC, Shahbudin S, Nor OM
    J Environ Biol, 2009 Sep;30(5 Suppl):821-4.
    PMID: 20143712
    The accumulative partitioning of Pb and Cu in the Rhizophora apiculata was studied randomly in the Setiu mangrove forest, Terengganu. Samples of leaves, barks and roots were collected randomly from the selected studied species. Sediments between the roots of the sampled mangrove plants were also collected. The results from analysis for Rhizophora apiculata shows that the concentration of Pb and Cu were accumulated higher in root tissue compared to bark and leaf tissue but lower than surrounding sediment level. The average concentration of Cu for Rhizophora apiculata in leaf, bark, root and sediment was 2.73, 3.94, 5.21 and 9.42 mg I(-1), respectively. Meanwhile, the average concentration of Pb in leaf, bark, root and sediment was 1.43, 1.38, 2.05 and 11.66 mg l(-1), respectively. Results of concentration factors (CF) show that the overall the concentration of Pb and Cu were accumulated much higher in roots system of Rhizophora apiculata.
    Matched MeSH terms: Environmental Pollutants/metabolism*
  13. Guo Y, Senthilkumar K, Alomirah H, Moon HB, Minh TB, Mohd MA, et al.
    Environ Sci Technol, 2013 Mar 19;47(6):2932-8.
    PMID: 23409981 DOI: 10.1021/es3052262
    Concentrations of 12 hydroxylated polycyclic aromatic hydrocarbons (OH-PAHs) were determined in 306 urine samples collected from seven Asian countries (China, India, Japan, Korea, Kuwait, Malaysia, and Vietnam) by high-performance liquid chromatography-tandem mass spectrometry (HPLC-MS/MS). The total concentrations of OH-PAHs found in the seven Asian countries were in the following increasing order: Malaysia (median: 2260 pg/mL) < Japan (4030 pg/mL) < China (5770 pg/mL) < India (6750 pg/mL) < Vietnam (8560 pg/mL) < Korea (9340 pg/mL) < Kuwait (10170 pg/mL). The measured urinary concentrations of 1-hydroxypyrene (1-PYR) in samples from Malaysia, Korea, and Japan (∼ 100 pg/mL) were similar to those reported for North America and Western Europe. The concentrations of 1-PYR in urine samples from China, India, and Vietnam were 4-10 times higher than those reported for other countries, thus far. Among the 12 OH-PAH compounds analyzed, hydroxynaphthalene (NAP: sum of 1-hydroxynaphthalene and 2-hydroxynaphthalene) was the dominant compound (accounting for 60-90% of total OH-PAHs), followed by hydroxyphenanthrene (PHEN: sum of 2-hydroxyphenanthrene, 3-hydroxyphenanthrene, 4-hydroxyphenanthrene, and 9-hydroxyphenanthrene [3-16%]), 2-hydroxyfluorene (3-20%), and 1-PYR (2-8%). The total daily intakes (DIs) of PAHs were estimated based on the urinary concentrations of their metabolites. The DIs of naphthalene were found to be higher for populations in Korea, Kuwait, and Vietnam (> 10 μg/day) than those of the other countries studied (∼ 5 μg/day). The DIs of phenanthrene and pyrene (> 10 μg/day) in the populations of China, India, and Vietnam were higher than those estimated for the populations in the other countries studied (∼ 5 μg/day).
    Matched MeSH terms: Environmental Pollutants/metabolism*
  14. Dadrasnia A, Ismail S
    Int J Environ Res Public Health, 2015 Aug;12(8):9848-63.
    PMID: 26295402 DOI: 10.3390/ijerph120809848
    This study investigated the capability of a biosurfactant produced by a novel strain of Bacillus salmalaya to enhance the biodegradation rates and bioavailability of organic contaminants. The biosurfactant produced by cultured strain 139SI showed high physicochemical properties and surface activity in the selected medium. The biosurfactant exhibited a high emulsification index and a positive result in the drop collapse test, with the results demonstrating the wetting activity of the biosurfactant and its potential to produce surface-active molecules. Strain 139SI can significantly reduce the surface tension (ST) from 70.5 to 27 mN/m, with a critical micelle concentration of 0.4%. Moreover, lubricating oil at 2% (v/v) was degraded on Day 20 (71.5). Furthermore, the biosurfactant demonstrated high stability at different ranges of salinity, pH, and temperature. Overall, the results indicated the potential use of B. salmalaya 139SI in environmental remediation processes.
    Matched MeSH terms: Environmental Pollutants/metabolism*
  15. Abbas SZ, Rafatullah M, Ismail N, Lalung J
    J Basic Microbiol, 2014 Dec;54(12):1279-87.
    PMID: 24852724 DOI: 10.1002/jobm.201400157
    This study focused on the isolation and characterization of high cadmium-resistant bacterial strains, possible exploitation of its cadmium-accumulation and cadmium-induced proteins. Cadmium-resistant bacterial strains designated as RZ1 and RZ2 were isolated from industrial wastewater of Penang, Malaysia. These isolates were identified as Enterobacter mori and Enterobacter sp. WS12 on the basis of phenotypic, biochemical and 16S rDNA sequence based molecular phylogenetic characteristics. Both isolates were Gram negative, cocci, and growing well in Lauria-Bertani broth medium at 35 °C temperature and pH 7.0. Results also indicated that Enterobacter mori and Enterobacter sp. WS12are capable to remove 87.75 and 85.11% of the cadmium from 100 µg ml(-1) concentration, respectively. This study indicates that these strains can be useful as an inexpensive and efficient bioremediation technology to remove and recover the cadmium from wastewater.
    Matched MeSH terms: Environmental Pollutants/metabolism*
  16. Naila A, Meerdink G, Jayasena V, Sulaiman AZ, Ajit AB, Berta G
    Environ Sci Pollut Res Int, 2019 Sep;26(26):26449-26471.
    PMID: 31363977 DOI: 10.1007/s11356-019-05992-4
    The biosphere is polluted with metals due to burning of fossil fuels, pesticides, fertilizers, and mining. The metals interfere with soil conservations such as contaminating aqueous waste streams and groundwater, and the evidence of this has been recorded since 1900. Heavy metals also impact human health; therefore, the emancipation of the environment from these environmental pollutants is critical. Traditionally, techniques to remove these metals include soil washing, removal, and excavation. Metal-accumulating plants could be utilized to remove these metal pollutants which would be an alternative option that would simultaneously benefit commercially and at the same time clean the environment from these pollutants. Commercial application of pollutant metals includes biofortification, phytomining, phytoremediation, and intercropping. This review discusses about the metal-accumulating plants, mechanism of metal accumulation, enhancement of metal accumulation, potential commercial applications, research trends, and research progress to enhance the metal accumulation, benefits, and limitations of metal accumulators. The review identified that the metal accumulator plants only survive in low or medium polluted environments with heavy metals. Also, more research is required about metal accumulators in terms of genetics, breeding potential, agronomics, and the disease spectrum. Moreover, metal accumulators' ability to uptake metals need to be optimized by enhancing metal transportation, transformation, tolerance to toxicity, and volatilization in the plant. This review would benefit the industries and environment management authorities as it provides up-to-date research information about the metal accumulators, limitation of the technology, and what could be done to improve the metal enhancement in the future.
    Matched MeSH terms: Environmental Pollutants/metabolism*
  17. Abdullah N, Tair R, Abdullah MH
    Pak J Biol Sci, 2014 Jan 01;17(1):62-7.
    PMID: 24783779
    Perna viridis (P. viridis) has been identified as a good biological indicator in identifying environmental pollution, especially when there are various types of Heavy Metals Accumulations (HMA) inside its tissue. Based on the potential of P. viridis to accumulate heavy metals and the data on its physical properties, this study proffers to determine the relationships between both properties. The similarities of the physical properties are used to mathematical model their relationships, which included the size (length, width, height) and weight (wet and dry) of P. viridis, whilst the heavy metals are focused on concentrations of Pb, Cu, Cr, Cd and Zn. The concentrations of metal elements are detected by using Flame Atomic Adsorption Spectrometry. Results show that the mean concentration of Pb, Cu, Cr, Cd, Zn, length, width, height, wet weight and dry weight are: 1.12 +/- 1.00, 2.36 +/- 1.65, 2.12 +/- 2.74, 0.44 +/- 0.41 and 16.52 +/- 10.64 mg kg(-1) (dry weight), 105.08 +/- 14.35, 41.64 +/- 4.64, 28.75 +/- 3.92 mm, 14.56 +/- 3.30 and 2.37 +/- 0.86 g, respectively. It is also found out that the relationships between the Heavy Metals Concentrations (HMA) and the physical properties can be represented using Multiple Linear Regressions (MLR) models, relating that the HMA of Zinc has affected significantly the physical growth properties of P. viridis.
    Matched MeSH terms: Environmental Pollutants/metabolism
  18. Halmi MI, Zuhainis SW, Yusof MT, Shaharuddin NA, Helmi W, Shukor Y, et al.
    Biomed Res Int, 2013;2013:384541.
    PMID: 24383052 DOI: 10.1155/2013/384541
    Bacteria with the ability to tolerate, remove, and/or degrade several xenobiotics simultaneously are urgently needed for remediation of polluted sites. A previously isolated bacterium with sodium dodecyl sulfate- (SDS-) degrading capacity was found to be able to reduce molybdenum to the nontoxic molybdenum blue. The optimal pH, carbon source, molybdate concentration, and temperature supporting molybdate reduction were pH 7.0, glucose at 1.5% (w/v), between 25 and 30 mM, and 25°C, respectively. The optimum phosphate concentration for molybdate reduction was 5 mM. The Mo-blue produced exhibits an absorption spectrum with a maximum peak at 865 nm and a shoulder at 700 nm. None of the respiratory inhibitors tested showed any inhibition to the molybdenum-reducing activity suggesting that the electron transport system of this bacterium is not the site of molybdenum reduction. Chromium, cadmium, silver, copper, mercury, and lead caused approximately 77, 65, 77, 89, 80, and 80% inhibition of the molybdenum-reducing activity, respectively. Ferrous and stannous ions markedly increased the activity of molybdenum-reducing activity in this bacterium. The maximum tolerable concentration of SDS as a cocontaminant was 3 g/L. The characteristics of this bacterium make it a suitable candidate for molybdenum bioremediation of sites cocontaminated with detergent pollutant.
    Matched MeSH terms: Environmental Pollutants/metabolism
  19. Mohajeri L, Abdul Aziz H, Ali Zahed M, Mohajeri S, Mohamed Kutty SR, Hasnain Isa M
    Water Sci Technol, 2011;63(4):618-26.
    PMID: 21330705 DOI: 10.2166/wst.2011.211
    Central composite design (CCD) and response surface methodology (RSM) were employed to optimize four important variables, i.e. amounts of oil, bacterial inoculum, nitrogen and phosphorus, for the removal of selected n-alkanes during bioremediation of weathered crude oil in coastal sediments using laboratory bioreactors over a 60 day experimentation period. The reactors contained 1 kg soil with different oil, microorganisms and nutrients concentrations. The F Value of 26.89 and the probability value (P < 0.0001) demonstrated significance of the regression model. For crude oil concentration of 2, 16 and 30 g per kg sediments and under optimized conditions, n-alkanes removal was 97.38, 93.14 and 90.21% respectively. Natural attenuation removed 30.07, 25.92 and 23.09% n-alkanes from 2, 16 and 30 g oil/kg sediments respectively. Excessive nutrients addition was found to inhibit bioremediation.
    Matched MeSH terms: Environmental Pollutants/metabolism*
  20. Shukor MY, Gusmanizar N, Azmi NA, Hamid M, Ramli J, Shamaan NA, et al.
    J Environ Biol, 2009 Jan;30(1):57-64.
    PMID: 20112864
    Several local acrylamide-degrading bacteria have been isolated. One of the isolate that exhibited the highest growth on acrylamide as a nitrogen source was then further characterized. The isolate was tentatively identified as Bacillus cereus strain DRY135 based on carbon utilization profiles using Biolog GP plates and partial 16S rDNA molecular phylogeny. The isolate grew optimally in between the temperatures of 25 and 30 degrees C and within the pH range of 6.8 to 7.0. Glucose, fructose, lactose, maltose, mannitol, citric acid and sucrose supported growth with glucose being the best carbon source. Different concentrations of acrylamide ranging from 100 to 4000 mg l(-1) incorporated into the growth media shows that the highest growth was obtained at acrylamide concentrations of between 500 to 1500 mg l(-1). At 1000 mg l(-1) of acrylamide, degradation was 90% completed after ten days of incubation with concomitant cell growth. The metabolite acrylic acid was detected in the media during degradation. Other amides such as methacrylamide, nicotinamide, acetamide, propionamide and urea supported growth with the highest growth supported by acetamide, propionamide and urea. Strain DRY135, however was not able to assimilate 2-chloroacetamide. The characteristics of this isolate suggest that it would be useful in the bioremediation of acrylamide.
    Matched MeSH terms: Environmental Pollutants/metabolism*
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links