Displaying publications 1 - 20 of 27 in total

Abstract:
Sort:
  1. Suhaimi H, Ahmad FB, Friberg SE
    J Pharm Sci, 1995 Mar;84(3):376-80.
    PMID: 7616381
    A lamellar liquid crystalline region was identified in a typical skin lotion formulation system composed of a mixture of isostearic acid and triethanolamine (TEA) at 65:35 (w/w), decane, and water (the temperature was controlled at 30 degrees C). The interlayer spacings were determined by a small-angle X-ray diffraction technique. Incorporation of a natural dye, curcumin, resulted in lower interlayer spacings and higher penetration of water into the layered structure. However, the higher penetration of water was not apparent at all compositions of isostearic acid:TEA, decane, and water.
    Matched MeSH terms: Ethanolamines/chemistry*
  2. Masoumi HR, Kassim A, Basri M, Abdullah DK, Haron MJ
    Molecules, 2011 Jun 29;16(7):5538-49.
    PMID: 21716175 DOI: 10.3390/molecules16075538
    An Artificial Neural Network (ANN) based on the Quick Propagation (QP) algorithm was used in conjunction with an experimental design to optimize the lipase-catalyzed reaction conditions for the preparation of a triethanolamine (TEA)-based esterquat cationic surfactant. Using the best performing ANN, the optimum conditions predicted were an enzyme amount of 4.77 w/w%, reaction time of 24 h, reaction temperature of 61.9 °C, substrate (oleic acid: triethanolamine) molar ratio of 1:1 mole and agitation speed of 480 r.p.m. The relative deviation percentage under these conditions was less than 4%. The optimized method was successfully applied to the synthesis of the TEA-based esterquat cationic surfactant at a 2,000 mL scale. This method represents a more flexible and convenient means for optimizing enzymatic reaction using ANN than has been previously reported by conventional methods.
    Matched MeSH terms: Ethanolamines/chemistry*
  3. Zak AK, Razali R, Majid WH, Darroudi M
    Int J Nanomedicine, 2011;6:1399-403.
    PMID: 21796242 DOI: 10.2147/IJN.S19693
    Zinc oxide nanoparticles (ZnO-NPs) were synthesized via a solvothermal method in triethanolamine (TEA) media. TEA was utilized as a polymer agent to terminate the growth of ZnO-NPs. The ZnO-NPs were characterized by a number of techniques, including X-ray diffraction analysis, transition electron microscopy, and field emission electron microscopy. The ZnO-NPs prepared by the solvothermal process at 150°C for 18 hours exhibited a hexagonal (wurtzite) structure, with a crystalline size of 33 ± 2 nm, and particle size of 48 ± 7 nm. The results confirm that TEA is a suitable polymer agent to prepare homogenous ZnO-NPs.
    Matched MeSH terms: Ethanolamines/chemistry
  4. Bera H, Kumar S
    Int J Biol Macromol, 2018 Mar;108:1053-1062.
    PMID: 29122714 DOI: 10.1016/j.ijbiomac.2017.11.019
    The current study aimed at developing diethonolamine-modified high-methoxyl pectin (DMP)-alginate (ALG) based core-shell composites for controlled intragastric delivery of metformin HCl (MFM) by combined approach of floating and bioadhesion. DMP with degree of amidation of 48.72% was initially accomplished and characterized by FTIR, DSC and XRD analyses. MFM-loaded core matrices were then fabricated by ionotropic gelation technique employing zinc acetate as cross-linker. The core matrices were further coated by fenugreek gum (FG)-ALG gel membrane via diffusion-controlled interfacial complexation method. Various formulations demonstrated excellent drug encapsulation efficiency (DEE, 51-70%) and sustained drug eluting behavior (Q8h, 72-96%), which were extremely influenced by polymer-blend (ALG:DMP) ratios, low density additives (olive oil/magnesium stearate) and FG-ALG coating inclusion. The drug release profile of the core-shell matrices (F-7) was best fitted in zero-order kinetic model with case-II transport driven mechanism. It also portrayed outstanding gastroretentive characteristics. Moreover, the composites were analyzed for surface morphology, drug-excipients compatibility, thermal behavior and drug crystallinity. Thus, the developed composites are appropriate for controlled stomach-specific delivery of MFM for type 2 diabetes management.
    Matched MeSH terms: Ethanolamines/chemistry*
  5. An'amt M, Huang N, Radiman S, Lim H, Muhamad M
    Sains Malaysiana, 2014;43:137-144.
    Titanate nanotubes were prepared by a rapid hydrothermal method in the presence of triethanolamine (TEA) using TiO2 nanoparticles as a precursor. The addition of TEA significantly reduced the formation time of the titanate nanotubes from 24 to 6 h. The crystalline structure of the titanate nanotubes was revealed to be H2Ti2O5 through the X-ray diffraction (xRD) measurement. The morphology of the titanate nanotubes was confirmed using transmission electron microscopy (TEM) while the surface area was characterized using Brunauer-Emmett-Teller (BET) surface area analysis. The titanate nanotubes produced were several hundred nanometers in length and had an average outer diameter of - 11.5 nm, inner diameter of -5.0 nm, interlayer spacing of 0.93 nm and surface area of >250 m2Ig. The photocatalytic activity of the titanate nanotubes was studied using methylene blue as a model dye; the titanate nanotubes showed better photocatalytic performance as compared to TiO2 nanoparticles.
    Matched MeSH terms: Ethanolamines
  6. Masoumi HR, Basri M, Kassim A, Abdullah DK, Abdollahi Y, Abd Gani SS, et al.
    ScientificWorldJournal, 2013;2013:962083.
    PMID: 24324389 DOI: 10.1155/2013/962083
    Lipase-catalyzed production of triethanolamine-based esterquat by esterification of oleic acid (OA) with triethanolamine (TEA) in n-hexane was performed in 2 L stirred-tank reactor. A set of experiments was designed by central composite design to process modeling and statistically evaluate the findings. Five independent process variables, including enzyme amount, reaction time, reaction temperature, substrates molar ratio of OA to TEA, and agitation speed, were studied under the given conditions designed by Design Expert software. Experimental data were examined for normality test before data processing stage and skewness and kurtosis indices were determined. The mathematical model developed was found to be adequate and statistically accurate to predict the optimum conversion of product. Response surface methodology with central composite design gave the best performance in this study, and the methodology as a whole has been proven to be adequate for the design and optimization of the enzymatic process.
    Matched MeSH terms: Ethanolamines/chemical synthesis; Ethanolamines/chemistry*
  7. Mansor SM, Navaratnam V, Yahaya N, Nair NK, Wernsdorfer WH, Degen PH
    J Chromatogr B Biomed Appl, 1996 Jul 12;682(2):321-5.
    PMID: 8844426
    A rapid and selective high-performance liquid chromatographic assay for determination of a new antimalarial drug (benflumetol, BFL) is described. After extraction with hexane-diethyl ether (70:30, v/v) from plasma, BFL was analysed using a C18 Partisil 10 ODS-3 reversed-phase stainless steel column and a mobile phase of acetonitrile-0.1 M ammonium acetate (90:10, v/v) adjusted to pH 4.9 with ultraviolet detection at 335 nm. The mean recovery of BFL over a concentration range of 50-400 ng/ml was 96.8 +/- 5.2%. The within-day and day-to-day coefficients of variation were 1.8-4.0 and 1.8-4.2%, respectively. The minimum detectable concentration in plasma for BFL was 5 ng/ml with a C.V. of less than 10%. This method was found to be suitable for clinical pharmacokinetic studies.
    Matched MeSH terms: Ethanolamines/blood*; Ethanolamines/pharmacokinetics
  8. Bera H, Kumar S, Maiti S
    Int J Biol Macromol, 2018 Oct 15;118(Pt A):149-159.
    PMID: 29932998 DOI: 10.1016/j.ijbiomac.2018.06.085
    Olive oil-entrapped diethanolamine-modified high-methoxyl pectin (DMP)-gellan gum (GG)-bionanofiller composites were developed for controlled intragastric delivery of metformin HCl (MFM). DMP had a degree of amidation of 48.7% and was characterized further by FTIR, XRD and DSC analyses. MFM-loaded composites were subsequently accomplished by green synthesis via ionotropic gelation technique using zinc acetate as cross-linker. The thermal, X-ray and infrared analyses suggested an environment in the composites compatible with the drug, except certain degree of attenuation in drug's crystallinity. Scanning electron microscopy revealed almost spherical shape of the composites. Depending upon the mass ratios of GG:DMP, types of nanofiller (neusilin/bentonite/Florite) and oil inclusion, the composites exhibited variable drug encapsulation efficiency (DEE, 50-85%) and extended drug release behaviours (Q8h, 69-94%) in acetate buffer (pH 4.5). The optimized oil-entrapped Florite R NF/GG: DMP (1:1) composites eluted MFM via case-II transport mechanism and its drug release data was best fitted in zero-order kinetic model. The optimized formulation demonstrated excellent gastroretentive properties and substantial hypoglycemic effect in streptozotocin-induced diabetic rats. These novel hybrid matrices were thus found suitable for controlled intragastric delivery of MFM for the management of type 2 diabetes.
    Matched MeSH terms: Ethanolamines/administration & dosage; Ethanolamines/chemistry
  9. Kuan CS, See Too WC, Few LL
    PLoS One, 2016;11(1):e0147886.
    PMID: 26807725 DOI: 10.1371/journal.pone.0147886
    Ethanolamine kinase (EK) catalyzes the phosphorylation of ethanolamine, the first step in the CDP-ethanolamine pathway for the biosynthesis of phosphatidylethanolamine (PE). Human EK exists as EK1, EK2α and EK2β isoforms, encoded by two separate genes, named ek1 and ek2. EK activity is stimulated by carcinogens and oncogenes, suggesting the involvement of EK in carcinogenesis. Currently, little is known about EK transcriptional regulation by endogenous or exogenous signals, and the ek gene promoter has never been studied.
    Matched MeSH terms: Ethanolamines; Phosphatidylethanolamines
  10. Abdollahi Y, Sairi NA, Said SB, Abouzari-lotf E, Zakaria A, Sabri MF, et al.
    PMID: 26119355 DOI: 10.1016/j.saa.2015.06.036
    It is believe that 80% industrial of carbon dioxide can be controlled by separation and storage technologies which use the blended ionic liquids absorber. Among the blended absorbers, the mixture of water, N-methyldiethanolamine (MDEA) and guanidinium trifluoromethane sulfonate (gua) has presented the superior stripping qualities. However, the blended solution has illustrated high viscosity that affects the cost of separation process. In this work, the blended fabrication was scheduled with is the process arranging, controlling and optimizing. Therefore, the blend's components and operating temperature were modeled and optimized as input effective variables to minimize its viscosity as the final output by using back-propagation artificial neural network (ANN). The modeling was carried out by four mathematical algorithms with individual experimental design to obtain the optimum topology using root mean squared error (RMSE), R-squared (R(2)) and absolute average deviation (AAD). As a result, the final model (QP-4-8-1) with minimum RMSE and AAD as well as the highest R(2) was selected to navigate the fabrication of the blended solution. Therefore, the model was applied to obtain the optimum initial level of the input variables which were included temperature 303-323 K, x[gua], 0-0.033, x[MDAE], 0.3-0.4, and x[H2O], 0.7-1.0. Moreover, the model has obtained the relative importance ordered of the variables which included x[gua]>temperature>x[MDEA]>x[H2O]. Therefore, none of the variables was negligible in the fabrication. Furthermore, the model predicted the optimum points of the variables to minimize the viscosity which was validated by further experiments. The validated results confirmed the model schedulability. Accordingly, ANN succeeds to model the initial components of the blended solutions as absorber of CO2 capture in separation technologies that is able to industries scale up.
    Matched MeSH terms: Ethanolamines
  11. Ragunathan T, Husin H, Wood CD
    ACS Omega, 2020 Aug 11;5(31):19342-19349.
    PMID: 32803027 DOI: 10.1021/acsomega.0c00753
    The ever-increasing demand for the finite source of oil has led oil production companies to produce and transport the produced crude oil as efficiently and economically as possible. One of the major concerns especially in waters like the South China Sea is the deposition of wax on the walls of the pipeline or wellbore, constricting and hindering the hydrocarbon flow. This is due to the low seabed temperatures, which can be below the wax appearance temperature (WAT), leading to the deposition of wax out of waxy crude oil through the molecular dispersion mechanism. Currently, many prevention and remedy methods are in place to overcome the problem, but most of the additives possess environmental threat, as most of the chemical solutions used are toxic, nonorganic, and costly. Hence, this paper aims to provide some insights into the effect of palm oil derivatives such as crude palm oil (CPO) and crude palm kernel oil (CPKO) on wax inhibition. The effect of aging time (i.e., immersion time) was also evaluated. A comparison was made between paraffin inhibition efficiency results (PIE %) obtained by CPO, CPKO, poly(ethylene-co-vinyl acetate) (EVA), and triethanolamine (TEA). It was observed that the average efficiency of 81.67% was obtained when 1% CPO was added to heavy crude oil. The wax inhibition performance reached a plateau after 1.5 h of aging time for all of the investigated samples.
    Matched MeSH terms: Ethanolamines
  12. Prastomo, Niki, Lockman, Zainovia, Ahmad Fauzi Mohd Noor, Ahmad Nuruddin, Matsuda, Atsunori
    MyJurnal
    Tetragonal Y2O3 stabilized Zirconia (t-Y-ZrO2) powders were doped with Nb2O5 to seek a possibility if electronics doping would enhance the electronics conductivity of the insulating oxide. In this work Y2O3 was added as a stabilizer to produce tetragonal ZrO2 whereas Nb2O5 was added for the electronic doping. Several compositions of powders were prepared by thermal decomposition method and were post annealed at different temperatures. Precursor solutions were prepared from the mixture of zirconyl nitrate, yttrium nitrate and niobium tartarate as well as TEA (triethanolamine). The mixed solution were evaporated, pyrolysed and calcined to produce nanosized powders. The phase formation of the as-made powders was investigated by x-ray diffractometer. The additions of 7% Y2O3 were found to stabilize the tetragonal phase of zirconia.
    The addition of Nb2O5 did not alter the stability of the tetragonal phase but it was found that the conductivity of the material has changed. The band gap as measured by the UV-Visible Spectrometer gave a value in the range of 2.97 to 5.01 eV. XRD was also used to deduce the crystallite size (by using Scherer’s equation) and transmission electron microcopy was used to view the particle sizes and shapes. The Nb doped t-Y-ZrO2 prepared in this work was to be nanosized crystal with size ranges from 7 nm to 15 nm.
    Matched MeSH terms: Ethanolamines
  13. Masoumi HR, Kassim A, Basri M, Abdullah DK
    Molecules, 2011 Jun 03;16(6):4672-80.
    PMID: 21642941 DOI: 10.3390/molecules16064672
    A Taguchi robust design method with an L₉ orthogonal array was implemented to optimize experimental conditions for the biosynthesis of triethanolamine (TEA)-based esterquat cationic surfactants using an enzymatic reaction method. The esterification reaction conversion% was considered as the response. Enzyme amount, reaction time, reaction temperature and molar ratio of substrates, [oleic acid: triethanolamine (OA:TEA)] were chosen as main parameters. As a result of the Taguchi analysis in this study, the molar ratio of substrates was found to be the most influential parameter on the esterification reaction conversion%. The amount of enzyme in the reaction had also a significant effect on reaction conversion%.
    Matched MeSH terms: Ethanolamines/chemistry*
  14. Lythell E, Suardíaz R, Hinchliffe P, Hanpaibool C, Visitsatthawong S, Oliveira ASF, et al.
    Chem Commun (Camb), 2020 Jun 23;56(50):6874-6877.
    PMID: 32432618 DOI: 10.1039/d0cc02520h
    MCR (mobile colistin resistance) enzymes catalyse phosphoethanolamine (PEA) addition to bacterial lipid A, threatening the "last-resort" antibiotic colistin. Molecular dynamics and density functional theory simulations indicate that monozinc MCR supports PEA transfer to the Thr285 acceptor, positioning MCR as a mono- rather than multinuclear member of the alkaline phosphatase superfamily.
    Matched MeSH terms: Ethanolamines/chemistry
  15. Chang CH, Few LL, Lim BH, Yvonne-Tee GB, Chew AL, See Too WC
    Parasitol Res, 2023 Jul;122(7):1651-1661.
    PMID: 37202563 DOI: 10.1007/s00436-023-07869-5
    The de novo biosynthesis of phosphatidylcholine and phosphatidylethanolamine in Entamoeba histolytica is largely dependent on the CDP-choline and CDP-ethanolamine pathways. Although the first enzymes of these pathways, EhCK1 and EhCK2, have been previously characterized, their enzymatic activity was found to be low and undetectable, respectively. This study aimed to identify the unusual characteristics of these enzymes in this deadly parasite. The discovery that EhCKs prefer Mn2+ over the typical Mg2+ as a metal ion cofactor is intriguing for CK/EK family of enzymes. In the presence of Mn2+, the activity of EhCK1 increased by approximately 108-fold compared to that in Mg2+. Specifically, in Mg2+, EhCK1 exhibited a Vmax and K0.5 of 3.5 ± 0.1 U/mg and 13.9 ± 0.2 mM, respectively. However, in Mn2+, it displayed a Vmax of 149.1 ± 2.5 U/mg and a K0.5 of 9.5 ± 0.1 mM. Moreover, when Mg2+ was present at a constant concentration of 12 mM, the K0.5 value for Mn2+ was ~ 2.4-fold lower than that in Mn2+ alone, without affecting its Vmax. Although the enzyme efficiency of EhCK1 was significantly improved by about 25-fold in Mn2+, it is worth noting that its Km for choline and ATP were higher than in equimolar of Mg2+ in a previous study. In contrast, EhCK2 showed specific activity towards ethanolamine in Mn2+, exhibiting Michaelis-Menten kinetic with ethanolamine (Km = 312 ± 27 µM) and cooperativity with ATP (K0.5 = 2.1 ± 0.2 mM). Additionally, we investigated the effect of metal ions on the substrate recognition of human choline and ethanolamine kinase isoforms. Human choline kinase α2 was found to absolutely require Mg2+, while choline kinase β differentially recognized choline and ethanolamine in Mg2+ and Mn2+, respectively. Finally, mutagenesis studies revealed that EhCK1 Tyr129 was critical for Mn2+ binding, while Lys233 was essential for substrate catalysis but not metal ion binding. Overall, these findings provide insight into the unique characteristics of the EhCKs and highlight the potential for new approaches to treating amoebiasis. Amoebiasis is a challenging disease for clinicians to diagnose and treat, as many patients are asymptomatic. However, by studying the enzymes involved in the CDP-choline and CDP-ethanolamine pathways, which are crucial for de novo biosynthesis of phosphatidylcholine and phosphatidylethanolamine in Entamoeba histolytica, there is great potential to discover new therapeutic approaches to combat this disease.
    Matched MeSH terms: Ethanolamines/metabolism; Phosphatidylethanolamines/metabolism
  16. Luan OG, Yam H, Samian R, Wajidi MFF, Mahadi NM, Mohamad S, et al.
    Trop Life Sci Res, 2017 Jul;28(2):57-74.
    PMID: 28890761 MyJurnal DOI: 10.21315/tlsr2017.28.2.5
    Burkholderia pseudomallei is a soil-dwelling bacterium that causes a globally emerging disease called melioidosis. Approximately one third of the in silico annotated genes in its genome are classified as hypothetical genes. This group of genes is difficult to be functionally characterised partly due to the absence of noticeable phenotypes under conventional laboratory settings. A bioinformatic survey of hypothetical genes revealed a gene designated as BPSL3393 that putatively encodes a small protein of 11 kDA with a CoA binding domain. BPSL3393 is conserved in all the B. pseudomallei genomes as well as various in other species within the genus Burkholderia. Taking into consideration that CoA plays a ubiquitous metabolic role in all life forms, characterisation of BPSL3393 may uncover a previously over-looked metabolic feature of B. pseudomallei. The gene was deleted from the genome using a double homologous recombination approach yielding a null mutant. The BPSL3393 mutant showed no difference in growth rate with the wild type under rich and minimal growth conditions. An extensive metabolic phenotyping test was performed involving 95 metabolic substrates. The deletion mutant of BPSL3393 was severely impaired in its ethanolamine metabolism. The growth rate of the mutant was attenuated when ethanolamine was used as the sole carbon source. A transcriptional analysis of the ethanolamine metabolism genes showed that they were down-regulated in the BPSL3393 mutant. This seemed to suggest that BPSL3393 functions as a positive regulator for ethanolamine metabolism.
    Matched MeSH terms: Ethanolamines
  17. Loh LC
    Family Physician, 2005;13(3):0-0.
    MyJurnal
    Significant changes have occurred in relation to how chronic asthma is being treated. Emphasis has now shifted from viewing asthma as a condition of smooth muscle dysfunction to one of chronic inflammation. As such, anti-inflammatory therapy forming the cornerstone of treatment represents the first important milestone in the evolution of asthma treatment. For this purpose, inhaled corticosteroid (ICS) is by far the most effective anti-inflammatory therapy. Another important milestone is the recognition of the superiority of adding long-acting β2-agonist (LABA) to ICS over escalating ICS dose alone or other forms of add-on therapies in treating asthmatic patients not responding to regular ICS alone. The effectiveness of adding LABA to ICS in treating asthma logically led to combining the two drugs into one single inhaler (salmeterol/fluticasone and budesonide/formoterol) that has the attractiveness of being user-friendly and ensuring that ICS is not missed out. The unique property of formoterol that allows for repetitive flexible dosing paved way to the concept of using Symbicort for both regular maintenance dosing and as required rescue medication. This revolutionary approach has been recently shown to provide improved asthma outcome, achieved at an overall lower or at least comparable corticosteroid intake, and may represent another evolutionary step in the treatment strategy of chronic asthma.
    Matched MeSH terms: Ethanolamines
  18. Bukhari SN, Tajuddin Y, Benedict VJ, Lam KW, Jantan I, Jalil J, et al.
    Chem Biol Drug Des, 2014 Feb;83(2):198-206.
    PMID: 24433224 DOI: 10.1111/cbdd.12226
    Inhibitory effects on neutrophils' chemotaxis, phagocytosis and production of reactive oxygen species (ROS) are among the important targets in developing anti-inflammatory agents and immunosuppressants. Eight series of chalcone derivatives including five newly synthesized series were assessed for their inhibitory effects on chemotaxis, phagocytosis and ROS production in human polymorphonuclear neutrophils (PMNs). Inhibition of PMNs' chemotaxis and phagocytosis abilities were investigated using the Boyden chamber technique and the Phagotest kit, respectively, while ROS production was evaluated using luminol- and lucigenin-based chemiluminescence assay. The new derivatives (4d and 8d), which contain 4-methylaminoethanol functional group were active in all the assays performed. It was also observed that some of the compounds were active in inhibiting chemotaxis while others suppressed phagocytosis and ROS production. The information obtained gave new insight into chalcone derivatives with the potential to be developed as immunomodulators.
    Matched MeSH terms: Ethanolamines/chemistry
  19. Liam CK, Pang YK, Chua KT
    Asian Pac J Allergy Immunol, 2014 Jun;32(2):145-52.
    PMID: 25003728 DOI: 10.12932/AP0359.32.2.2013
    OBJECTIVE: To evaluate Malaysian patients' satisfaction levels and asthma control with Symbicort SMART® in the primary care setting.
    METHOD: This is a cross-sectional, multicentre study involving adult patients with persistent asthma who were prescribed only Symbicort SMART in the preceding one month prior to recruitment. Patients' satisfaction with Symbicort SMART and asthma control were evaluated using the self-administered Satisfaction with Asthma Treatment Questionnaire (SATQ) and the Asthma Control Test (ACT).
    RESULTS: Asthma was controlled (ACT score >20) in 189 (83%) of 228 patients. The mean overall SATQ score for patients with controlled asthma was 5.65 indicating a high satisfaction level, which was positively correlated with high ACT scores. There were differences in asthma control based on ethnicity, number of unscheduled visits and treatment compliance.
    CONCLUSIONS: Symbicort SMART resulted in a high satisfaction level and asthma control among Malaysian patients treated in the primary care setting and it is an effective and appealing treatment for asthmatic patients.
    Study site: General practice clinics, Malaysia
    Matched MeSH terms: Ethanolamines/administration & dosage*; Ethanolamines/adverse effects
  20. William T, Menon J, Rajahram G, Chan L, Ma G, Donaldson S, et al.
    Emerg Infect Dis, 2011 Jul;17(7):1248-55.
    PMID: 21762579 DOI: 10.3201/eid1707.101017
    The simian parasite Plasmodium knowlesi causes severe human malaria; the optimal treatment remains unknown. We describe the clinical features, disease spectrum, and response to antimalarial chemotherapy, including artemether-lumefantrine and artesunate, in patients with P. knowlesi malaria diagnosed by PCR during December 2007-November 2009 at a tertiary care hospital in Sabah, Malaysia. Fifty-six patients had PCR-confirmed P. knowlesi monoinfection and clinical records available for review. Twenty-two (39%) had severe malaria; of these, 6 (27%) died. Thirteen (59%) had respiratory distress; 12 (55%), acute renal failure; and 12, shock. None experienced coma. Patients with uncomplicated disease received chloroquine, quinine, or artemether-lumefantrine, and those with severe disease received intravenous quinine or artesunate. Parasite clearance times were 1-2 days shorter with either artemether-lumefantrine or artesunate treatment. P. knowlesi is a major cause of severe and fatal malaria in Sabah. Artemisinin derivatives rapidly clear parasitemia and are efficacious in treating uncomplicated and severe knowlesi malaria.
    Matched MeSH terms: Ethanolamines/administration & dosage; Ethanolamines/therapeutic use
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links