Displaying publications 1 - 20 of 47 in total

  1. Nakasha JJ, Sinniah UR, Puteh A, Hassan SA
    ScientificWorldJournal, 2014;2014:168950.
    PMID: 24688363 DOI: 10.1155/2014/168950
    Tubers of safed musli (Chlorophytum borivilianum) were immersed in three different concentrations of gibberellic acid (GA3) or humic acid (HA) prior to planting. The highest concentration of GA3 (20 mg L(-1)) and all concentrations of HA (5, 10, and 15%) appeared to hasten tuber sprouting and promote uniform sprouting pattern. The use of 20 mg L(-1) GA3 or 15% HA successfully improved sprouting and mean sprouting time. Safed musli growth and development was improved through the increase in the number of leaves, total leaf area, leaf area index, and total fibrous root length. This directly influenced the number of new tubers formed. The use of 20 mg L(-1) GA3 or 15% HA gave similar response with nonsignificant difference among them. However, due to the cost of production, the result from this study suggests that 15% HA should be used to obtain improved sprouting percentage, homogeneous stand establishment, efficient plant growth and development, and increased yield of safed musli.
    Matched MeSH terms: Gene Expression Regulation, Developmental/physiology*
  2. Ng ST, Sanusi Jangi M, Shirley MW, Tomley FM, Wan KL
    Exp Parasitol, 2002 11 13;101(2-3):168-73.
    PMID: 12427472
    The protozoan parasite Eimeria tenella has a complex life cycle that includes two major asexual developmental stages, the merozoite and the sporozoite. The expressed sequence tag (EST) approach has been previously used to study gene expression of merozoites. We report here the generation and analysis of 556 ESTs from sporozoites. Comparative analyses of the two datasets reveal a number of transcripts that are preferentially expressed in a specific stage, including previously uncharacterised sequences. The data presented indicate the invaluable potential of the comparative EST analysis for providing information on gene expression patterns in the different developmental stages of E. tenella.
    Matched MeSH terms: Gene Expression Regulation, Developmental/genetics*
  3. Abdullah MF, Abdullah SF, Omar NS, Mahmood Z, Fazliah Mohd Noor SN, Kannan TP, et al.
    Cell Biol Int, 2014 May;38(5):582-90.
    PMID: 24375868 DOI: 10.1002/cbin.10229
    Stem cells from human exfoliated deciduous teeth (SHED) and dental pulp stem cells (DPSCs) obtained from the dental pulp of human extracted tooth were cultured and characterized to confirm that these were mesenchymal stem cells. The proliferation rate was assessed using AlamarBlue® cell assay. The differentially expressed genes in SHED and DPSCs were identified using the GeneFishing™ technique. The proliferation rate of SHED (P < 0.05) was significantly higher than DPSCs while SHED had a lower multiplication rate and shorter population doubling time (0.01429, 60.57 h) than DPSCs (0.00286, 472.43 h). Two bands were highly expressed in SHED and three bands in DPSCs. Sequencing analysis showed these to be TIMP metallopeptidase inhibitor 1 (TIMP1), and ribosomal protein s8, (RPS8) in SHED and collagen, type I, alpha 1, (COL1A1), follistatin-like 1 (FSTL1), lectin, galactoside-binding, soluble, 1, (LGALS1) in DPSCs. TIMP1 is involved in degradation of the extracellular matrix, cell proliferation and anti-apoptotic function and RPS8 is involved as a rate-limiting factor in translational regulation; COL1A1 is involved in the resistance and elasticity of the tissues; FSTL1 is an autoantigen associated with rheumatoid arthritis; LGALS1 is involved in cell growth, differentiation, adhesion, RNA processing, apoptosis and malignant transformation. This, along with further protein expression analysis, holds promise in tissue engineering and regenerative medicine.
    Matched MeSH terms: Gene Expression Regulation, Developmental*
  4. Dzaki N, Ramli KN, Azlan A, Ishak IH, Azzam G
    Sci Rep, 2017 03 16;7:43618.
    PMID: 28300076 DOI: 10.1038/srep43618
    The mosquito Aedes aegypti (Ae. aegypti) is the most notorious vector of illness-causing viruses such as Dengue, Chikugunya, and Zika. Although numerous genetic expression studies utilizing quantitative real-time PCR (qPCR) have been conducted with regards to Ae. aegypti, a panel of genes to be used suitably as references for the purpose of expression-level normalization within this epidemiologically important insect is presently lacking. Here, the usability of seven widely-utilized reference genes i.e. actin (ACT), eukaryotic elongation factor 1 alpha (eEF1α), alpha tubulin (α-tubulin), ribosomal proteins L8, L32 and S17 (RPL8, RPL32 and RPS17), and glyceraldeyde 3-phosphate dehydrogenase (GAPDH) were investigated. Expression patterns of the reference genes were observed in sixteen pre-determined developmental stages and in cell culture. Gene stability was inferred from qPCR data through three freely available algorithms i.e. BestKeeper, geNorm, and NormFinder. The consensus rankings generated from stability values provided by these programs suggest a combination of at least two genes for normalization. ACT and RPS17 are the most dependably expressed reference genes and therefore, we propose an ACT/RPS17 combination for normalization in all Ae. aegypti derived samples. GAPDH performed least desirably, and is thus not a recommended reference gene. This study emphasizes the importance of validating reference genes in Ae. aegypti for qPCR based research.
    Matched MeSH terms: Gene Expression Regulation, Developmental*
  5. Tan SH, Chung HH, Shu-Chien AC
    Biochem Biophys Res Commun, 2010 Mar 12;393(3):397-403.
    PMID: 20138842 DOI: 10.1016/j.bbrc.2010.01.130
    Despite the known importance of long-chained polyunsaturated fatty acids (LC-PUFA) during development, very little is known about their utilization and biosynthesis during embryogenesis. Combining the advantages of the existence of a complete range of enzymes required for LC-PUFA biosynthesis and the well established developmental biology tools in zebrafish, we examined the expression patterns of three LC-PUFA biosynthesis genes, Elovl2-like elongase (elovl2), Elovl5-like elongase (elovl5) and fatty acyl desaturase (fad) in different zebrafish developmental stages. The presence of all three genes in the brain as early as 24 hours post fertilization (hpf) implies LC-PUFA synthesis activity in the embryonic brain. This expression eventually subsides from 72 hpf onwards, coinciding with the initiation of elovl2 and fad expression in the liver and intestine, 2 organs known to be involved in adult fish LC-PUFA biosynthesis. Collectively, these patterns strongly suggest the necessity for localized production of LC-PUFA in the brain during in early stage embryos prior to the maturation of the liver and intestine. Interestingly, we also showed a specific expression of elovl5 in the proximal convoluted tubule (PCT) of the zebrafish pronephros, suggesting a possible new role for LC-PUFA in kidney development and function.
    Matched MeSH terms: Gene Expression Regulation, Developmental*
  6. Teoh PH, Shu-Chien AC, Chan WK
    Dev. Dyn., 2010 Mar;239(3):865-74.
    PMID: 20108353 DOI: 10.1002/dvdy.22221
    pbx1, a TALE (three-amino acid loop extension) homeodomain transcription factor, is involved in a diverse range of developmental processes. We examined the expression of pbx1 during zebrafish development by in situ hybridization. pbx1 transcripts could be detected in the central nervous system and pharyngeal arches from 24 hpf onwards. In the swim bladder anlage, pbx1 was detected as early as 28 hpf, making it the earliest known marker for this organ. Morpholino-mediated gene knockdown of pbx1 revealed that the swim bladder failed to inflate, with eventual lethality occurring by 8 dpf. The knockdown of pbx1 did not perturb the expression of prdc and foxA3, with both early swim bladder markers appearing normally at 36 and 48 hpf, respectively. However, the expression of anxa5 was completely abolished by pbx1 knockdown at 60 hpf suggesting that pbx1 may be required during the late stage of swim bladder development.
    Matched MeSH terms: Gene Expression Regulation, Developmental*
  7. Senthil Kumar R, Srinivasan R, Rawdzah MA, Malini P
    Genomics, 2020 03;112(2):1464-1476.
    PMID: 31450005 DOI: 10.1016/j.ygeno.2019.08.017
    Pieris rapae is a serious pest of brassicas worldwide. We performed de novo assembly of P. rapae transcriptome by next-generation sequencing and assembled approximately 65,727,422 clean paired-end reads into 32,118 unigenes, of which 13,585 were mapped to 255 pathways in the KEGG database. A total of 6173 novel transcripts were identified from reads directly mapped to P. rapae genome. Additionally, 1490 SSRs, 301,377 SNPs, and 29,284 InDels were identified as potential molecular markers to explore polymorphism within P. rapae populations. We screened and mapped 36 transcripts related to OBP, CSP, SNMP, PBAN, and OR. We analyzed the expression profiles of 7 selected genes involved in pheromone transport and degradation by quantitative real-time PCR; these genes are sex-specific and differentially expressed in the developmental stages. Overall, the comprehensive transcriptome resources described in this study could help understand and identify molecular targets particularly reproduction-related genes for developing effective P. rapae management tools.
    Matched MeSH terms: Gene Expression Regulation, Developmental*
  8. Nikolov LA, Endress PK, Sugumaran M, Sasirat S, Vessabutr S, Kramer EM, et al.
    Proc Natl Acad Sci U S A, 2013 Nov 12;110(46):18578-83.
    PMID: 24167265 DOI: 10.1073/pnas.1310356110
    Rafflesiaceae, which produce the world's largest flowers, have captivated the attention of biologists for nearly two centuries. Despite their fame, however, the developmental nature of the floral organs in these giants has remained a mystery. Most members of the family have a large floral chamber defined by a diaphragm. The diaphragm encloses the reproductive organs where pollination by carrion flies occurs. In lieu of a functional genetic system to investigate floral development in these highly specialized holoparasites, we used comparative studies of structure, development, and gene-expression patterns to investigate the homology of their floral organs. Our results surprisingly demonstrate that the otherwise similar floral chambers in two Rafflesiaceae subclades, Rafflesia and Sapria, are constructed very differently. In Rafflesia, the diaphragm is derived from the petal whorl. In contrast, in Sapria it is derived from elaboration of a unique ring structure located between the perianth and the stamen whorl, which, although developed to varying degrees among the genera, appears to be a synapomorphy of the Rafflesiaceae. Thus, the characteristic features that define the floral chamber in these closely related genera are not homologous. These differences refute the prevailing hypothesis that similarities between Sapria and Rafflesia are ancestral in the family. Instead, our data indicate that Rafflesia-like and Sapria-like floral chambers represent two distinct derivations of this morphology. The developmental repatterning we identified in Rafflesia, in particular, may have provided architectural reinforcement, which permitted the explosive growth in floral diameter that has arisen secondarily within this subclade.
    Matched MeSH terms: Gene Expression Regulation, Developmental/physiology*
  9. Ong WD, Okubo-Kurihara E, Kurihara Y, Shimada S, Makita Y, Kawashima M, et al.
    Plant Cell Physiol, 2017 01 01;58(1):95-105.
    PMID: 28011868 DOI: 10.1093/pcp/pcw181
    Plants have a remarkable ability to perceive and respond to various wavelengths of light and initiate regulation of different cascades of light signaling and molecular components. While the perception of red light and the mechanisms of its signaling involving phytochromes are largely known, knowledge of the mechanisms of blue light signaling is still limited. Chemical genetics involves the use of diverse small active or synthetic molecules to evaluate biological processes. By combining chemicals and analyzing the effects they have on plant morphology, we identified a chemical, 3-bromo-7-nitroindazole (3B7N), that promotes hypocotyl elongation of wild-type Arabidopsis only under continuous blue light. Further evaluation with loss-of-function mutants confirmed that 3B7N inhibits photomorphogenesis through cryptochrome-mediated light signaling. Microarray analysis demonstrated that the effect of 3B7N treatment on gene expression in cry1cry2 is considerably smaller than that in the wild type, indicating that 3B7N specifically interrupts cryptochrome function in the control of seedling development in a light-dependent manner. We demonstrated that 3B7N directly binds to CRY1 protein using an in vitro binding assay. These results suggest that 3B7N is a novel chemical that directly inhibits plant cryptochrome function by physical binding. The application of 3B7N can be used on other plants to study further the blue light mechanism and the genetic control of cryptochromes in the growth and development of plant species.
    Matched MeSH terms: Gene Expression Regulation, Developmental/drug effects; Gene Expression Regulation, Developmental/radiation effects
  10. Prasad TNVKV, Adam S, Visweswara Rao P, Ravindra Reddy B, Giridhara Krishna T
    IET Nanobiotechnol, 2017 Apr;11(3):277-285.
    PMID: 28476985 DOI: 10.1049/iet-nbt.2015.0122
    Advancement in materials synthesis largely depends up on their diverse applications and commercialisation. Antifungal effects of phytogenic silver nanoparticles (AgNPs) were evident, but the reports on the effects of the same on agricultural crops are scant. Herein, we report for the first time, size dependent effects of phytogenic AgNPs (synthesised using Stevia rebaudiana leaf extract) on the germination, growth and biochemical parameters of three important agricultural crops viz., rice (Oryza sativa L), maize (Zea mays L) and peanut (Arachis hypogaea L). AgNPs with varied sizes were prepared by changing the concentration and quantity of the Stevia rebaudiana leaf extract. As prepared AgNPs were characterized using the techniques, such as high-resolution transmission electron microscopy, particle size and zeta potential analyser. The measured (dynamic light scattering technique) average sizes of particles are ranging from 68.5 to 116 nm. Fourier transform infrared studies confirmed the participation of alcohols, aldehydes and amides in the reduction and stabilisation of the AgNPs. Application of these AgNPs to three agricultural crop seeds (rice, maize and peanut) resulted in size dependent effects on their germination, growth and biochemical parameters such as, chlorophyll content, carotenoid and protein content. Further, antifungal activity of AgNPs also evaluated against fungi, Aspergillus niger.
    Matched MeSH terms: Gene Expression Regulation, Developmental/drug effects; Gene Expression Regulation, Developmental/physiology
  11. Zhou L, Wang P, Zhang J, Heng BC, Tong GQ
    Zygote, 2016 Feb;24(1):89-97.
    PMID: 25672483 DOI: 10.1017/S0967199414000768
    ING2 (inhibitor of growth protein-2) is a member of the ING-gene family and participates in diverse cellular processes involving tumor suppression, DNA repair, cell cycle regulation, and cellular senescence. As a subunit of the Sin3 histone deacetylase complex co-repressor complex, ING2 binds to H3K4me3 to regulate chromatin modification and gene expression. Additionally, ING2 recruits histone methyltransferase (HMT) activity for gene repression, which is independent of the HDAC class I or II pathway. However, the physiological function of ING2 in mouse preimplantation embryo development has not yet been characterized previously. The expression, localization and function of ING2 during preimplantation development were investigated in this study. We showed increasing expression of ING2 within the nucleus from the 4-cell embryo stage onwards; and that down-regulation of ING2 expression by endoribonuclease-prepared small interfering RNA (esiRNA) microinjection results in developmental arrest during the morula to blastocyst transition. Embryonic cells microinjected with ING2-specific esiRNA exhibited decreased blastulation rate compared to the negative control. Further investigation of the underlying mechanism indicated that down-regulation of ING2 significantly increased expression of p21, whilst decreasing expression of HDAC1. These results suggest that ING2 may play a crucial role in the process of preimplantation embryo development through chromatin regulation.
    Matched MeSH terms: Gene Expression Regulation, Developmental*
  12. Pati S, Supeno NE, Muthuraju S, Abdul Hadi R, Ghani AR, Idris FM, et al.
    Biomed Res Int, 2014;2014:503162.
    PMID: 25254208 DOI: 10.1155/2014/503162
    The striatum is considered to be the central processing unit of the basal ganglia in locomotor activity and cognitive function of the brain. IGF-1 could act as a control switch for the long-term proliferation and survival of EGF+bFGF-responsive cultured embryonic striatal stem cell (ESSC), while LIF imposes a negative impact on cell proliferation. The IGF-1-treated ESSCs also showed elevated hTERT expression with demonstration of self-renewal and trilineage commitment (astrocytes, oligodendrocytes, and neurons). In order to decipher the underlying regulatory microRNA (miRNA)s in IGF-1/LIF-treated ESSC-derived neurogenesis, we performed in-depth miRNA profiling at 12 days in vitro and analyzed the candidates using the Partek Genome Suite software. The annotated miRNA fingerprints delineated the differential expressions of miR-143, miR-433, and miR-503 specific to IGF-1 treatment. Similarly, the LIF-treated ESSCs demonstrated specific expression of miR-326, miR-181, and miR-22, as they were nonsignificant in IGF-treated ESSCs. To elucidate the possible downstream pathways, we performed in silico mapping of the said miRNAs into ingenuity pathway analysis. Our findings revealed the important mRNA targets of the miRNAs and suggested specific interactomes. The above studies introduced a new genre of miRNAs for ESSC-based neuroregenerative therapeutic applications.
    Matched MeSH terms: Gene Expression Regulation, Developmental/drug effects
  13. Theron KE, Penny CB, Hosie MJ
    Reprod Biol, 2014 Sep;14(3):224-33.
    PMID: 25152521 DOI: 10.1016/j.repbio.2014.04.005
    RU486 is a partial progesterone and estrogen receptor antagonist, functioning to actively silence progesterone receptor gene-associated transcription. For this reason, it has been used as both a contraceptive and an abortive agent. In the present study, cellular and gene specific effects of RU486 were investigated in a rat model of early pregnancy, including key phases of the window of receptivity and early implantation. As these stages are hormonally regulated by progesterone and estrogens, the focus here was to elucidate the mechanism of action of a single dose of RU486, used as a postcoital contraceptive, to successfully prevent implantation of a viable blastocyst. Immunofluorescent techniques were used to examine the change in protein levels of PR in RU486-treated endometria at days 4.5, 5.5 and 6.5 of pregnancy. Changes in the Pgr gene expression level as a consequence of RU486 administration was evaluated using quantitative real-time reverse transcription polymerase chain reaction. The progesterone receptor gene and protein expression was ubiquitously decreased throughout pregnancy as a direct consequence of RU486 administration. The overall effects of postcoital RU486 administration during early pregnancy indicate highly effective inhibition of progesterone and estrogen effects on the endometrium, mediated by their receptors. More specifically, the expression and localization of the progesterone receptor mirrors that described in ovariectomized animal models, suggesting a hormonally under-stimulated endometrium. Clearly from the present study, the precise priming of the endometrium by progesterone, in preparation for blastocyst implantation, is severely impaired by RU486, thus predisposing the uterus to pregnancy failure.
    Matched MeSH terms: Gene Expression Regulation, Developmental/drug effects*
  14. Jafari S, Hosseini SM, Hajian M, Forouzanfar M, Jafarpour F, Abedi P, et al.
    J Assist Reprod Genet, 2011 Nov;28(11):1119-27.
    PMID: 22020531 DOI: 10.1007/s10815-011-9638-1
    To investigate the effect of epigenetic modification on pattern, time and capacity of transcription activation of POU5F1, the key marker of pluripotency, in cloned bovine embryos.
    Matched MeSH terms: Gene Expression Regulation, Developmental/drug effects
  15. Dzaki N, Wahab W, Azlan A, Azzam G
    Biochem Biophys Res Commun, 2018 10 20;505(1):106-112.
    PMID: 30241946 DOI: 10.1016/j.bbrc.2018.09.074
    CTP Synthase (CTPS) is a metabolic enzyme that is recognized as a catalyst for nucleotide, phospholipid and sialoglycoprotein production. Though the structural characteristics and regulatory mechanisms of CTPS are well-understood, little is known regarding the extent of its involvement during the early developmental stages of vertebrates. Zebrafish carries two CTPS genes, annotated as ctps1a and ctps1b. Phylogenetic analyses show that both genes had diverged from homologues in the ancestral Actinopterygii, Oreochromis niloticus. Conservation of common CTPS-catalytic regions further establishes that both proteins are likely to be functionally similar to hsaCTPS. Here, we show that ctps1a is more critical throughout the initial period of embryonic development than ctps1b. The effects of concurrent partial knockdown are dependent on ctps1a vs ctps1b dosage ratios. When these are equally attenuated, abnormal phenotypes acquired prior to the pharyngula period disappear in hatchlings (48hpf); however, if either gene is more attenuated than the other, these only become more pronounced in advanced stages. Generally, disruption to normal ctps1a or ctps1b expression levels by morpholinos culminates in the distortion of the early spinal column as well as multiple-tissue oedema. Other effects include slower growth rates, increased mortality rates and impaired structural formation of the young fish's extremities. Embryos grown in DON, a glutamine-analogue drug and CTPS antagonist, also exhibit similar characteristics, thus strengthening the validity of the morpholino-induced phenotypes observed. Together, our results demonstrate the importance of CTPS for the development of zebrafish embryos, as well as a disparity in activity and overall importance amongst isozymes.
    Matched MeSH terms: Gene Expression Regulation, Developmental*
  16. Yang C, Li X, Li Q, Zhang B, Li H, Lin J
    Neuroreport, 2017 Dec 06;28(17):1180-1185.
    PMID: 28953094 DOI: 10.1097/WNR.0000000000000903
    Chicken embryos are used widely in the fields of developmental biology and neurobiology. The chicken embryo also serves as a model to analyze gene expression and function using in ovo electroporation. Plasmids may be injected into the spinal cord or tectum of the chicken central nervous system by microinjection for electroporation. Here, we developed a novel method that combines in ovo electroporation and neuronal culturing to study gene function in the chicken tectum during embryo development. Our method can be used to study in-vivo and in-vitro exogenous genes' function. In addition, live cell imaging microscopy, immunostaining, and transfection can be used with our method to study neuronal growth, development, neurite growth and retraction, and axonal pathfinding. Our result showed that axons were present in isolated neurons after culturing for 24 h, and cell debris was low after replacing the media at 48 h. Many GFP-expressing neurons were observed in the cultured cells after 48 h. We successfully cultured the neurons for 3 weeks. Together, this method combines in ovo electroporation and neuronal culturing advantages and is more convenient for the gene function analysis.
    Matched MeSH terms: Gene Expression Regulation, Developmental*
  17. Nakashima M, Kato M, Aoto K, Shiina M, Belal H, Mukaida S, et al.
    Ann Neurol, 2018 04;83(4):794-806.
    PMID: 29534297 DOI: 10.1002/ana.25208
    OBJECTIVE: The cytoplasmic fragile X mental retardation 1 interacting proteins 2 (CYFIP2) is a component of the WASP-family verprolin-homologous protein (WAVE) regulatory complex, which is involved in actin dynamics. An obvious association of CYFIP2 variants with human neurological disorders has never been reported. Here, we identified de novo hotspot CYFIP2 variants in neurodevelopmental disorders and explore the possible involvement of the CYFIP2 mutants in the WAVE signaling pathway.

    METHODS: We performed trio-based whole-exome sequencing (WES) in 210 families and case-only WES in 489 individuals with epileptic encephalopathies. The functional effect of CYFIP2 variants on WAVE signaling was evaluated by computational structural analysis and in vitro transfection experiments.

    RESULTS: We identified three de novo CYFIP2 variants at the Arg87 residue in 4 unrelated individuals with early-onset epileptic encephalopathy. Structural analysis indicated that the Arg87 residue is buried at an interface between CYFIP2 and WAVE1, and the Arg87 variant may disrupt hydrogen bonding, leading to structural instability and aberrant activation of the WAVE regulatory complex. All mutant CYFIP2 showed comparatively weaker interactions to the VCA domain than wild-type CYFIP2. Immunofluorescence revealed that ectopic speckled accumulation of actin and CYFIP2 was significantly increased in cells transfected with mutant CYFIP2.

    INTERPRETATION: Our findings suggest that de novo Arg87 variants in CYFIP2 have gain-of-function effects on the WAVE signaling pathway and are associated with severe neurological disorders. Ann Neurol 2018;83:794-806.

    Matched MeSH terms: Gene Expression Regulation, Developmental/genetics
  18. Teh HF, Neoh BK, Hong MP, Low JY, Ng TL, Ithnin N, et al.
    PLoS One, 2013;8(4):e61344.
    PMID: 23593468 DOI: 10.1371/journal.pone.0061344
    To better understand lipid biosynthesis in oil palm mesocarp, in particular the differences in gene regulation leading to and including de novo fatty acid biosynthesis, a multi-platform metabolomics technology was used to profile mesocarp metabolites during six critical stages of fruit development in comparatively high- and low-yielding oil palm populations. Significantly higher amino acid levels preceding lipid biosynthesis and nucleosides during lipid biosynthesis were observed in a higher yielding commercial palm population. Levels of metabolites involved in glycolysis revealed interesting divergence of flux towards glycerol-3-phosphate, while carbon utilization differences in the TCA cycle were proven by an increase in malic acid/citric acid ratio. Apart from insights into the regulation of enhanced lipid production in oil palm, these results provide potentially useful metabolite yield markers and genes of interest for use in breeding programmes.
    Matched MeSH terms: Gene Expression Regulation, Developmental/physiology*
  19. Huang CJ, Nguyen PN, Choo KB, Sugii S, Wee K, Cheong SK, et al.
    Int J Med Sci, 2014;11(8):824-33.
    PMID: 24936146 DOI: 10.7150/ijms.8358
    A miRNA precursor generally gives rise to one major miRNA species derived from the 5' arm, and are called miRNA-5p. However, more recent studies have shown co-expression of miRNA-5p and -3p, albeit in different concentrations, in cancer cells targeting different sets of transcripts. Co-expression and regulation of the -5p and -3p miRNA species in stem cells, particularly in the reprogramming process, have not been studied.
    Matched MeSH terms: Gene Expression Regulation, Developmental
  20. Golbabapour S, Abdulla MA, Hajrezaei M
    Int J Mol Sci, 2011;12(12):8661-94.
    PMID: 22272098 DOI: 10.3390/ijms12128661
    Epigenetic mechanisms are responsible for the regulation of transcription of imprinted genes and those that induce a totipotent state. Starting just after fertilization, DNA methylation pattern undergoes establishment, reestablishment and maintenance. These modifications are important for normal embryo and placental developments. Throughout life and passing to the next generation, epigenetic events establish, maintain, erase and reestablish. In the context of differentiated cell reprogramming, demethylation and activation of genes whose expressions contribute to the pluripotent state is the crux of the matter. In this review, firstly, regulatory epigenetic mechanisms related to somatic cell nuclear transfer (SCNT) reprogramming are discussed, followed by embryonic development, and placental epigenetic issues.
    Matched MeSH terms: Gene Expression Regulation, Developmental
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links