Displaying publications 1 - 20 of 159 in total

Abstract:
Sort:
  1. Tan KK, Tiong V, Tan JY, Wong JE, Teoh BT, Abd-Jamil J, et al.
    Trop Biomed, 2021 Sep 01;38(3):283-288.
    PMID: 34362871 DOI: 10.47665/tb.38.3.069
    Various methods have been developed for rapid and high throughput full genome sequencing of SARS-CoV-2. Here, we described a protocol for targeted multiplex full genome sequencing of SARS-CoV-2 genomic RNA directly extracted from human nasopharyngeal swabs using the Ion Personal Genome Machine (PGM). This protocol involves concomitant amplification of 237 gene fragments encompassing the SARS-CoV-2 genome to increase the abundance and yield of viral specific sequencing reads. Five complete and one near-complete genome sequences of SARS-CoV-2 were generated with a single Ion PGM sequencing run. The sequence coverage analysis revealed two amplicons (positions 13 751-13 965 and 23 941-24 106), which consistently gave low sequencing read coverage in all isolates except 4Apr20-64- Hu. We analyzed the potential primer binding sites within these low covered regions and noted that the 4Apr20-64-Hu possess C at positions 13 730 and 23 929, whereas the other isolates possess T at these positions. The genome nucleotide variations observed suggest that the naturally occurring variations present in the actively circulating SARS-CoV-2 strains affected the performance of the target enrichment panel of the Ion AmpliSeq™ SARS CoV 2 Research Panel. The possible impact of other genome nucleotide variations warrants further investigation, and an improved version of the Ion AmpliSeq™ SARS CoV 2 Research Panel, hence, should be considered.
    Matched MeSH terms: Genome, Viral*
  2. Guo R, Zheng K, Luo L, Liu Y, Shao H, Guo C, et al.
    Microbiol Spectr, 2022 Aug 31;10(4):e0058522.
    PMID: 35862991 DOI: 10.1128/spectrum.00585-22
    Vibrio parahaemolyticus, a widespread marine bacterium, is responsible for a variety of diseases in marine organisms. Consumption of raw or undercooked seafood contaminated with V. parahaemolyticus is also known to cause acute gastroenteritis in humans. While numerous dsDNA vibriophages have been isolated so far, there have been few studies of vibriophages belonging to the ssDNA Microviridae family. In this study, a novel ssDNA phage, vB_VpaM_PG19 infecting V. parahaemolyticus, with a 5,572 bp ssDNA genome with a G+C content of 41.31% and encoded eight open reading frames, was isolated. Genome-wide phylogenetic analysis of the total phage isolates in the GenBank database revealed that vB_VpaM_PG19 was only related to the recently deposited vibriophage vB_VpP_WS1. The genome-wide average nucleotide homology of the two phages was 89.67%. The phylogenetic tree and network analysis showed that vB_VpaM_PG19 was different from other members of the Microviridae family and might represent a novel viral genus, together with vibriophage vB_VpP_WS1, named Vimicrovirus. One-step growth curves showed that vB_VpaM_PG19 has a short incubation period, suggesting its potential as an antimicrobial agent for pathogenic V. parahaemolyticus. IMPORTANCE Vibriophage vB_VpaM_PG19 was distant from other isolated microviruses in the phylogenetic tree and network analysis and represents a novel microviral genus, named Vimicrovirus. Our report describes the genomic and phylogenetic features of vB_VpaM_PG19 and provides a potential antimicrobial candidate for pathogenic V. parahaemolyticus.
    Matched MeSH terms: Genome, Viral*
  3. Hasan MM, Das R, Rasheduzzaman M, Hussain MH, Muzahid NH, Salauddin A, et al.
    Virus Res, 2021 May;297:198390.
    PMID: 33737154 DOI: 10.1016/j.virusres.2021.198390
    Coronavirus Disease 2019 (COVID-19) warrants comprehensive investigations of publicly available Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) genomes to gain new insight about their epidemiology, mutations, and pathogenesis. Nearly 0.4 million mutations have been identified so far among the ∼60,000 SARS-CoV-2 genomic sequences. In this study, we compared a total of 371 SARS-CoV-2 published whole genomes reported from different parts of Bangladesh with 467 sequences reported globally to understand the origin of viruses, possible patterns of mutations, and availability of unique mutations. Phylogenetic analyses indicated that SARS-CoV-2 viruses might have transmitted through infected travelers from European countries, and the GR clade was found as predominant in Bangladesh. Our analyses revealed 4604 mutations at the RNA level including 2862 missense mutations, 1192 synonymous mutations, 25 insertions and deletions and 525 other types of mutation. In line with the global trend, D614G mutation in spike glycoprotein was predominantly high (98 %) in Bangladeshi isolates. Interestingly, we found the average number of mutations in ORF1ab, S, ORF3a, M, and N were significantly higher (p < 0.001) for sequences containing the G614 variant compared to those having D614. Previously reported frequent mutations, such as R203K, D614G, G204R, P4715L and I300F at protein levels were also prevalent in Bangladeshi isolates. Additionally, 34 unique amino acid changes were revealed and categorized as originating from different cities. These analyses may increase our understanding of variations in SARS-CoV-2 virus genomes, circulating in Bangladesh and elsewhere.
    Matched MeSH terms: Genome, Viral*
  4. Chakraborty S, Deb B, Barbhuiya PA, Uddin A
    Virus Res, 2019 04 02;263:129-138.
    PMID: 30664908 DOI: 10.1016/j.virusres.2019.01.011
    Codon usage bias (CUB) is the unequal usage of synonymous codons of an amino acid in which some codons are used more often than others and is widely used in understanding molecular biology, genetics, and functional regulation of gene expression. Nipah virus (NiV) is an emerging zoonotic paramyxovirus that causes fatal disease in both humans and animals. NiV was first identified during an outbreak of a disease in Malaysia in 1998 and then occurred periodically since 2001 in India, Bangladesh, and the Philippines. We used bioinformatics tools to analyze the codon usage patterns in a genome-wide manner among 11 genomes of NiV as no work was reported yet. The compositional properties revealed that the overall GC and AT contents were 41.96 and 58.04%, respectively i.e. Nipah virus genes were AT-rich. Correlation analysis between overall nucleotide composition and its 3rd codon position suggested that both mutation pressure and natural selection might influence the CUB across Nipah genomes. Neutrality plot revealed natural selection might have played a major role while mutation pressure had a minor role in shaping the codon usage bias in NiV genomes.
    Matched MeSH terms: Genome, Viral*
  5. Zhu M, Shen J, Zeng Q, Tan JW, Kleepbua J, Chew I, et al.
    Front Public Health, 2021 07 30;9:685315.
    PMID: 34395364 DOI: 10.3389/fpubh.2021.685315
    Background: The ongoing coronavirus disease 2019 (COVID-19) pandemic has posed an unprecedented challenge to public health in Southeast Asia, a tropical region with limited resources. This study aimed to investigate the evolutionary dynamics and spatiotemporal patterns of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in the region. Materials and Methods: A total of 1491 complete SARS-CoV-2 genome sequences from 10 Southeast Asian countries were downloaded from the Global Initiative on Sharing Avian Influenza Data (GISAID) database on November 17, 2020. The evolutionary relationships were assessed using maximum likelihood (ML) and time-scaled Bayesian phylogenetic analyses, and the phylogenetic clustering was tested using principal component analysis (PCA). The spatial patterns of SARS-CoV-2 spread within Southeast Asia were inferred using the Bayesian stochastic search variable selection (BSSVS) model. The effective population size (Ne) trajectory was inferred using the Bayesian Skygrid model. Results: Four major clades (including one potentially endemic) were identified based on the maximum clade credibility (MCC) tree. Similar clustering was yielded by PCA; the first three PCs explained 46.9% of the total genomic variations among the samples. The time to the most recent common ancestor (tMRCA) and the evolutionary rate of SARS-CoV-2 circulating in Southeast Asia were estimated to be November 28, 2019 (September 7, 2019 to January 4, 2020) and 1.446 × 10-3 (1.292 × 10-3 to 1.613 × 10-3) substitutions per site per year, respectively. Singapore and Thailand were the two most probable root positions, with posterior probabilities of 0.549 and 0.413, respectively. There were high-support transmission links (Bayes factors exceeding 1,000) in Singapore, Malaysia, and Indonesia; Malaysia involved the highest number (7) of inferred transmission links within the region. A twice-accelerated viral population expansion, followed by a temporary setback, was inferred during the early stages of the pandemic in Southeast Asia. Conclusions: With available genomic data, we illustrate the phylogeography and phylodynamics of SARS-CoV-2 circulating in Southeast Asia. Continuous genomic surveillance and enhanced strategic collaboration should be listed as priorities to curb the pandemic, especially for regional communities dominated by developing countries.
    Matched MeSH terms: Genome, Viral/genetics
  6. Zainulabid UA, Mat Yassim AS, Hussain M, Aslam A, Soffian SN, Mohd Ibrahim MS, et al.
    PLoS One, 2022;17(2):e0263678.
    PMID: 35213571 DOI: 10.1371/journal.pone.0263678
    SARS-CoV-2 has spread throughout the world since its discovery in China, and Malaysia is no exception. WGS has been a crucial approach in studying the evolution and genetic diversity of SARS-CoV-2 in the ongoing pandemic. Despite considerable number of SARS-CoV-2 genome sequences have been submitted to GISAID and NCBI databases, there is still scarcity of data from Malaysia. This study aims to report new Malaysian lineages of the virus, responsible for the sustained spikes in COVID-19 cases during the third wave of the pandemic. Patients with nasopharyngeal and/or oropharyngeal swabs confirmed COVID-19 positive by real-time RT-PCR with CT value < 25 were chosen for WGS. The selected SARS-CoV-2 isolates were then sequenced, characterized and analyzed along with 986 sequences of the dominant lineages of D614G variants currently circulating throughout Malaysia. The prevalence of clade GH and G formed strong ground for the presence of two Malaysian lineages of AU.2 and B.1.524 that has caused sustained spikes of cases in the country. Statistical analysis on the association of gender and age group with Malaysian lineages revealed a significant association (p <0.05). Phylogenetic analysis revealed dispersion of 41 lineages, of these, 22 lineages are still active. Mutational analysis showed presence of unique G1223C missense mutation in transmembrane domain of the spike protein. For better understanding of the SARS-CoV-2 evolution in Malaysia especially with reference to the reported lineages, large scale studies based on WGS are warranted.
    Matched MeSH terms: Genome, Viral*
  7. Babadi AA, Rahmati S, Fakhlaei R, Heidari R, Baradaran S, Akbariqomi M, et al.
    Sci Rep, 2022 Nov 12;12(1):19416.
    PMID: 36371566 DOI: 10.1038/s41598-022-23996-y
    The current COVID-19 pandemic outbreak poses a serious threat to public health, demonstrating the critical need for the development of effective and reproducible detection tests. Since the RT-qPCR primers are highly specific and can only be designed based on the known sequence, mutation sensitivity is its limitation. Moreover, the mutations in the severe acute respiratory syndrome β-coronavirus (SARS-CoV-2) genome led to new highly transmissible variants such as Delta and Omicron variants. In the case of mutation, RT-qPCR primers cannot recognize and attach to the target sequence. This research presents an accurate dual-platform DNA biosensor based on the colorimetric assay of gold nanoparticles and the surface-enhanced Raman scattering (SERS) technique. It simultaneously targets four different regions of the viral genome for detection of SARS-CoV-2 and its new variants prior to any sequencing. Hence, in the case of mutation in one of the target sequences, the other three probes could detect the SARS-CoV-2 genome. The method is based on visible biosensor color shift and a locally enhanced electromagnetic field and significantly amplified SERS signal due to the proximity of Sulfo-Cyanine 3 (Cy3) and AuNPs intensity peak at 1468 cm-1. The dual-platform DNA/GO/AuNP biosensor exhibits high sensitivity toward the viral genome with a LOD of 0.16 ng/µL. This is a safe point-of-care, naked-eye, equipment-free, and rapid (10 min) detection biosensor for diagnosing COVID-19 cases at home using a nasopharyngeal sample.
    Matched MeSH terms: Genome, Viral/genetics
  8. Yap PSX, Tan TS, Chan YF, Tee KK, Kamarulzaman A, Teh CSJ
    J Microbiol Biotechnol, 2020 Jul 28;30(7):962-966.
    PMID: 32627759 DOI: 10.4014/jmb.2006.06009
    Monitoring the mutation dynamics of human severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is critical in understanding its infectivity, virulence and pathogenicity for development of a vaccine. In an "age of mobility," the pandemic highlights the importance and vulnerability of regionalization and labor market interdependence in Southeast Asia. We intend to characterize the genetic variability of viral populations within the region to provide preliminary information for regional surveillance in the future. By analyzing 142 complete genomes from South East Asian (SEA) countries, we identified three central variants distinguished by nucleotide and amino acid changes.
    Matched MeSH terms: Genome, Viral
  9. Zhang W, Liang Y, Zheng K, Gu C, Liu Y, Wang Z, et al.
    BMC Genomics, 2021 Sep 20;22(1):675.
    PMID: 34544379 DOI: 10.1186/s12864-021-07978-4
    BACKGROUND: Marine bacteriophages play key roles in the community structure of microorganisms, biogeochemical cycles, and the mediation of genetic diversity through horizontal gene transfer. Recently, traditional isolation methods, complemented by high-throughput sequencing metagenomics technology, have greatly increased our understanding of the diversity of bacteriophages. Oceanospirillum, within the order Oceanospirillales, are important symbiotic marine bacteria associated with hydrocarbon degradation and algal blooms, especially in polar regions. However, until now there has been no isolate of an Oceanospirillum bacteriophage, and so details of their metagenome has remained unknown.

    RESULTS: Here, we reported the first Oceanospirillum phage, vB_OliS_GJ44, which was assembled into a 33,786 bp linear dsDNA genome, which includes abundant tail-related and recombinant proteins. The recombinant module was highly adapted to the host, according to the tetranucleotides correlations. Genomic and morphological analyses identified vB_OliS_GJ44 as a siphovirus, however, due to the distant evolutionary relationship with any other known siphovirus, it is proposed that this virus could be classified as the type phage of a new Oceanospirivirus genus within the Siphoviridae family. vB_OliS_GJ44 showed synteny with six uncultured phages, which supports its representation in uncultured environmental viral contigs from metagenomics. Homologs of several vB_OliS_GJ44 genes have mostly been found in marine metagenomes, suggesting the prevalence of this phage genus in the oceans.

    CONCLUSIONS: These results describe the first Oceanospirillum phage, vB_OliS_GJ44, that represents a novel viral cluster and exhibits interesting genetic features related to phage-host interactions and evolution. Thus, we propose a new viral genus Oceanospirivirus within the Siphoviridae family to reconcile this cluster, with vB_OliS_GJ44 as a representative member.

    Matched MeSH terms: Genome, Viral
  10. Nyunt MH, Soe HO, Aye KT, Aung WW, Kyaw YY, Kyaw AK, et al.
    Sci Rep, 2021 May 13;11(1):10203.
    PMID: 33986354 DOI: 10.1038/s41598-021-89361-7
    Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection is a major health concern globally. Genomic epidemiology is an important tool to assess the pandemic of coronavirus disease 2019 (COVID-19). Several mutations have been reported by genome analysis of the SARS-CoV-2. In the present study, we investigated the mutational and phylogenetic analysis of 30 whole-genome sequences for the virus's genomic characteristics in the specimens collected in the early phase of the pandemic (March-June, 2020) and the sudden surge of local transmission (August-September, 2020). The four samples in the early phase of infection were B.6 lineage and located within a clade of the samples collected at the same time in Singapore and Malaysia, while five returnees by rescue flights showed the lineage B. 1.36.1 (three from India), B.1.1 (one from India) and B.1.80 (one from China). However, there was no evidence of local spread from these returnees. Further, all 19 whole-genome sequences collected in the sudden surge of local transmission showed lineage B.1.36. The surge of the second wave on SARS-CoV-2 infection was linked to the single-introduction of a variant (B.1.36) that may result from the strict restriction of international travel and containment efforts. These genomic data provides the useful information to disease control and prevention strategy.
    Matched MeSH terms: Genome, Viral
  11. Kuang G, Xu Z, Wang J, Gao Z, Yang W, Wu W, et al.
    Microbiol Spectr, 2023 Aug 17;11(4):e0512222.
    PMID: 37306586 DOI: 10.1128/spectrum.05122-22
    Nelson Bay reovirus (NBV) is an emerging zoonotic virus that can cause acute respiratory disease in humans. These viruses are mainly discovered in Oceania, Africa, and Asia, and bats have been identified as their main animal reservoir. However, despite recent expansion of diversity for NBVs, the transmission dynamics and evolutionary history of NBVs are still unclear. This study successfully isolated two NBV strains (MLBC1302 and MLBC1313) from blood-sucking bat fly specimens (Eucampsipoda sundaica) and one (WDBP1716) from the spleen specimen of a fruit bat (Rousettus leschenaultii), which were collected at the China-Myanmar border area of Yunnan Province. Syncytia cytopathic effects (CPE) were observed in BHK-21 and Vero E6 cells infected with the three strains at 48 h postinfection. Electron micrographs of ultrathin sections showed numerous spherical virions with a diameter of approximately 70 nm in the cytoplasm of infected cells. The complete genome nucleotide sequence of the viruses was determined by metatranscriptomic sequencing of infected cells. Phylogenetic analysis demonstrated that the novel strains were closely related to Cangyuan orthoreovirus, Melaka orthoreovirus, and human-infecting Pteropine orthoreovirus HK23629/07. Simplot analysis revealed the strains originated from complex genomic reassortment among different NBVs, suggesting the viruses experienced a high reassortment rate. In addition, strains successfully isolated from bat flies also implied that blood-sucking arthropods might serve as potential transmission vectors. IMPORTANCE Bats are the reservoir of many viral pathogens with strong pathogenicity, including NBVs. Nevertheless, it is unclear whether arthropod vectors are involved in transmitting NBVs. In this study, we successfully isolated two NBV strains from bat flies collected from the body surface of bats, which implies that they may be vectors for virus transmission between bats. While the potential threat to humans remains to be determined, evolutionary analyses involving different segments revealed that the novel strains had complex reassortment histories, with S1, S2, and M1 segments highly similar to human pathogens. Further experiments are required to determine whether more NBVs are vectored by bat flies, their potential threat to humans, and transmission dynamics.
    Matched MeSH terms: Genome, Viral
  12. Asnet MJ, Rubia AG, Ramya G, Nagalakshmi RN, Shenbagarathai R
    J Vector Borne Dis, 2014 Jun;51(2):82-5.
    PMID: 24947213
    DENVirDB is a web portal that provides the sequence information and computationally curated information of dengue viral proteins. The advent of genomic technology has increased the sequences available in the public databases. In order to create relevant concise information on Dengue Virus (DENV), the genomic sequences were collected, analysed with the bioinformatics tools and presented as DENVirDB. It provides the comprehensive information of complete genome sequences of dengue virus isolates of Southeast Asia, viz. India, Bangladesh, Sri Lanka, East Timor, Philippines, Malaysia, Papua New Guinea, Brunei and China. DENVirDB also includes the structural and non-structural protein sequences of DENV. It intends to provide the integrated information on the physicochemical properties, topology, secondary structure, domain and structural properties for each protein sequences. It contains over 99 entries in complete genome sequences and 990 entries in protein sequences, respectively. Therefore, DENVirDB could serve as a user friendly database for researchers in acquiring sequences and proteomic information in one platform.
    Matched MeSH terms: Genome, Viral/genetics*
  13. Fan Z, Dahal G, Dasgupta I, Hay J, Hull R
    J Gen Virol, 1996 May;77 ( Pt 5):847-54.
    PMID: 8609480
    The DNA genomes of isolates of rice tungro bacilliform virus from Bangladesh, India, Indonesia, Malaysia and Thailand were cloned and compared with that of the type isolate from the Philippines. Restriction endonuclease maps revealed differences between the isolates and cross-hybridization showed that they fell into two groups, those from the Indian subcontinent and those from south-east Asian countries. The genomes of isolates from the Indian subcontinent contained a deletion of 64 bp when compared with those from south-east Asia. The implications of this variation are discussed.
    Matched MeSH terms: Genome, Viral*
  14. Etebari K, Filipović I, Rašić G, Devine GJ, Tsatsia H, Furlong MJ
    Virus Res, 2020 03;278:197864.
    PMID: 31945420 DOI: 10.1016/j.virusres.2020.197864
    Oryctes rhinoceros nudivirus (OrNV) has been an effective biocontrol agent against the insect pest Oryctes rhinoceros (Coleoptera: Scarabaeidae) for decades, but there is evidence that resistance could be evolving in some host populations. We detected OrNV infection in O. rhinoceros from Solomon Islands and used Oxford Nanopore Technologies (ONT) long-read sequencing to determine the full length of the virus genomic sequence isolated from an individual belonging to a mitochondrial lineage (CRB-G) that was previously reported as resistant to OrNV. The complete circular genome of the virus consisted of 125,917 nucleotides, 1.698 bp shorter than the originally-described full genome sequence of Ma07 strain from Malaysia. We found 130 out of 139 previously annotated ORFs (seven contained interrupted/non-coding sequences, two were identified as duplicated versions of the existing genes), as well as a putatively inverted regions containing four genes. These results demonstrate the usefulness of a long-read sequencing technology for resolving potential structural variations when describing new virus isolates. While the Solomon Islands isolate exhibited 99.41 % nucleotide sequence identity with the originally described strain, we found several genes, including a core gene (vlf-1), that contained multiple amino acid insertions and/or deletions as putative polymorphisms of large effect. Our complete annotated genome sequence of a newly found isolate in Solomon Islands provides a valuable resource to help elucidate the mechanisms that compromise the efficacy of OrNV as a biocontrol agent against the coconut rhinoceros beetle.
    Matched MeSH terms: Genome, Viral*
  15. Chatterjee A, Sicheritz-Pontén T, Yadav R, Kondabagil K
    Sci Rep, 2019 03 06;9(1):3690.
    PMID: 30842490 DOI: 10.1038/s41598-019-40171-y
    We report the detection of genomic signatures of giant viruses (GVs) in the metagenomes of three environment samples from Mumbai, India, namely, a pre-filter of a household water purifier, a sludge sample from wastewater treatment plant (WWTP), and a drying bed sample of the same WWTP. The de novo assembled contigs of each sample yielded 700 to 2000 maximum unique matches with the GV genomic database. In all three samples, the maximum number of reads aligned to Pandoraviridae, followed by Phycodnaviridae, Mimiviridae, Iridoviridae, and other Megaviruses. We also isolated GVs from every environmental sample (n = 20) we tested using co-culture of the sample with Acanthomoeba castellanii. From this, four randomly selected GVs were subjected to the genomic characterization that showed remarkable cladistic homology with the three GV families viz., Mimivirirdae (Mimivirus Bombay [MVB]), Megaviruses (Powai lake megavirus [PLMV] and Bandra megavius [BAV]), and Marseilleviridae (Kurlavirus [KV]). All 4 isolates exhibited remarkable genomic identity with respective GV families. Functionally, the genomes were indistinguishable from other previously reported GVs, encoding nearly all COGs across extant family members. Further, the uncanny genomic homogeneity exhibited by individual GV families across distant geographies indicate their yet to be ascertained ecological significance.
    Matched MeSH terms: Genome, Viral*
  16. Chong YL, Ng KH
    Virus Genes, 2017 Dec;53(6):774-777.
    PMID: 28456924 DOI: 10.1007/s11262-017-1459-6
    Human bocavirus (HBoV) is a single-stranded DNA virus in Parvoviridae family, causing respiratory diseases in human. The recent identifications of genomic recombination among the four human bocavirus genotypes and related non-human primate bocaviruses have shed lights into the evolutionary processes underpinning the diversity of primate bocavirus. Among these reports, however, we found inconsistency and possible alternative interpretations of the recombination events. In this study, these recombination events were reviewed, and the related genome sequences were re-analysed, aiming to inform the research community of bocavirus with more consistent knowledge and comprehensive interpretations on the recombination history of primate bocavirus.
    Matched MeSH terms: Genome, Viral/genetics*
  17. Vale FF, Nunes A, Oleastro M, Gomes JP, Sampaio DA, Rocha R, et al.
    Sci Rep, 2017 02 16;7:42471.
    PMID: 28205536 DOI: 10.1038/srep42471
    Helicobacter pylori genetic diversity is known to be influenced by mobile genomic elements. Here we focused on prophages, the least characterized mobile elements of H. pylori. We present the full genomic sequences, insertion sites and phylogenetic analysis of 28 prophages found in H. pylori isolates from patients of distinct disease types, ranging from gastritis to gastric cancer, and geographic origins, covering most continents. The genome sizes of these prophages range from 22.6-33.0 Kbp, consisting of 27-39 open reading frames. A 36.6% GC was found in prophages in contrast to 39% in H. pylori genome. Remarkably a conserved integration site was found in over 50% of the cases. Nearly 40% of the prophages harbored insertion sequences (IS) previously described in H. pylori. Tandem repeats were frequently found in the intergenic region between the prophage at the 3' end and the bacterial gene. Furthermore, prophage genomes present a robust phylogeographic pattern, revealing four distinct clusters: one African, one Asian and two European prophage populations. Evidence of recombination was detected within the genome of some prophages, resulting in genome mosaics composed by different populations, which may yield additional H. pylori phenotypes.
    Matched MeSH terms: Genome, Viral*
  18. Tan KK, Tan JY, Wong JE, Teoh BT, Tiong V, Abd-Jamil J, et al.
    Sci Rep, 2021 11 11;11(1):22105.
    PMID: 34764315 DOI: 10.1038/s41598-021-01223-4
    The COVID-19 pandemic first emerged in Malaysia in Jan 2020. As of 12th Sept 2021, 1,979,698 COVID-19 cases that occurred over three major epidemic waves were confirmed. The virus contributing to the three epidemic waves has not been well-studied. We sequenced the genome of 22 SARS-CoV-2 strains detected in Malaysia during the second and the ongoing third wave of the COVID-19 epidemic. Detailed phylogenetic and genetic variation analyses of the SARS-CoV-2 isolate genomes were performed using these newly determined sequences and all other available sequences. Results from the analyses suggested multiple independent introductions of SARS-CoV-2 into Malaysia. A new B.1.524(G) lineage with S-D614G mutation was detected in Sabah, East Malaysia and Selangor, Peninsular Malaysia on 7th October 2020 and 14th October 2020, respectively. This new B.1.524(G) group was not the direct descendant of any of the previously detected lineages. The new B.1.524(G) carried a set of genetic variations, including A701V (position variant frequency = 0.0007) in Spike protein and a novel G114T mutation at the 5'UTR. The biological importance of the specific mutations remained unknown. The sequential appearance of the mutations, however, suggests that the spread of the new B.1.524(G) lineages likely begun in Sabah and then spread to Selangor. The findings presented here support the importance of SARS-CoV-2 full genome sequencing as a tool to establish an epidemiological link between cases or clusters of COVID-19 worldwide.
    Matched MeSH terms: Genome, Viral
  19. Mutusamy P, Banga Singh KK, Su Yin L, Petersen B, Sicheritz-Ponten T, Clokie MRJ, et al.
    Int J Mol Sci, 2023 Feb 12;24(4).
    PMID: 36835084 DOI: 10.3390/ijms24043678
    Salmonella infections across the globe are becoming more challenging to control due to the emergence of multidrug-resistant (MDR) strains. Lytic phages may be suitable alternatives for treating these multidrug-resistant Salmonella infections. Most Salmonella phages to date were collected from human-impacted environments. To further explore the Salmonella phage space, and to potentially identify phages with novel characteristics, we characterized Salmonella-specific phages isolated from the Penang National Park, a conserved rainforest. Four phages with a broad lytic spectrum (kills >5 Salmonella serovars) were further characterized; they have isometric heads and cone-shaped tails, and genomes of ~39,900 bp, encoding 49 CDSs. As the genomes share a <95% sequence similarity to known genomes, the phages were classified as a new species within the genus Kayfunavirus. Interestingly, the phages displayed obvious differences in their lytic spectrum and pH stability, despite having a high sequence similarity (~99% ANI). Subsequent analysis revealed that the phages differed in the nucleotide sequence in the tail spike proteins, tail tubular proteins, and portal proteins, suggesting that the SNPs were responsible for their differing phenotypes. Our findings highlight the diversity of novel Salmonella bacteriophages from rainforest regions, which can be explored as an antimicrobial agent against MDR-Salmonella strains.
    Matched MeSH terms: Genome, Viral
  20. Tajuddin S, Khan AM, Chong LC, Wong CL, Tan JS, Ina-Salwany MY, et al.
    Appl Microbiol Biotechnol, 2023 Feb;107(2-3):749-768.
    PMID: 36520169 DOI: 10.1007/s00253-022-12312-3
    Vibrio alginolyticus is a Gram-negative bacterium commonly associated with mackerel poisoning. A bacteriophage that specifically targets and lyses this bacterium could be employed as a biocontrol agent for treating the bacterial infection or improving the shelf-life of mackerel products. However, only a few well-characterized V. alginolyticus phages have been reported in the literature. In this study, a novel lytic phage, named ΦImVa-1, specifically infecting V. alginolyticus strain ATCC 17749, was isolated from Indian mackerel. The phage has a short latent period of 15 min and a burst size of approximately 66 particles per infected bacterium. ΦImVa-1 remained stable for 2 h at a wide temperature (27-75 °C) and within a pH range of 5 to 10. Transmission electron microscopy revealed that ΦImVa-1 has an icosahedral head of approximately 60 nm in diameter with a short tail, resembling those in the Schitoviridae family. High throughput sequencing and bioinformatics analysis elucidated that ΦImVa-1 has a linear dsDNA genome of 77,479 base pairs (bp), with a G + C content of ~ 38.72% and 110 predicted gene coding regions (106 open reading frames and four tRNAs). The genome contains an extremely large virion-associated RNA polymerase gene and two smaller non-virion-associated RNA polymerase genes, which are hallmarks of schitoviruses. No antibiotic genes were found in the ΦImVa-1 genome. This is the first paper describing the biological properties, morphology, and the complete genome of a V. alginolyticus-infecting schitovirus. When raw mackerel fish flesh slices were treated with ΦImVa-1, the pathogen loads reduced significantly, demonstrating the potential of the phage as a biocontrol agent for V. alginolyticus strain ATCC 17749 in the food. KEY POINTS: • A novel schitovirus infecting Vibrio alginolyticus ATCC 17749 was isolated from Indian mackerel. • The complete genome of the phage was determined, analyzed, and compared with other phages. • The phage is heat stable making it a potential biocontrol agent in extreme environments.
    Matched MeSH terms: Genome, Viral
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links