Displaying publications 1 - 20 of 32 in total

Abstract:
Sort:
  1. Kato T, Kano M, Yokomori A, Azegami J, El Enshasy HA, Park EY
    Microb Cell Fact, 2023 May 22;22(1):105.
    PMID: 37217979 DOI: 10.1186/s12934-023-02114-1
    BACKGROUND: Previously, we isolated a riboflavin-overproducing Ashbya gossypii mutant (MT strain) and discovered some mutations in genes encoding flavoproteins. Here, we analyzed the riboflavin production in the MT strain, in view of flavoproteins, which are localized in the mitochondria.

    RESULTS: In the MT strain, mitochondrial membrane potential was decreased compared with that in the wild type (WT) strain, resulting in increased reactive oxygen species. Additionally, diphenyleneiodonium (DPI), a universal flavoprotein inhibitor, inhibited riboflavin production in the WT and MT strains at 50 µM, indicating that some flavoproteins may be involved in riboflavin production. The specific activities of NADH and succinate dehydrogenases were significantly reduced in the MT strain, but those of glutathione reductase and acetohydroxyacid synthase were increased by 4.9- and 25-fold, respectively. By contrast, the expression of AgGLR1 gene encoding glutathione reductase was increased by 32-fold in the MT strain. However, that of AgILV2 gene encoding the catalytic subunit of acetohydroxyacid synthase was increased by only 2.1-fold. These results suggest that in the MT strain, acetohydroxyacid synthase, which catalyzes the first reaction of branched-chain amino acid biosynthesis, is vital for riboflavin production. The addition of valine, which is a feedback inhibitor of acetohydroxyacid synthase, to a minimal medium inhibited the growth of the MT strain and its riboflavin production. In addition, the addition of branched-chain amino acids enhanced the growth and riboflavin production in the MT strain.

    CONCLUSION: The significance of branched-chain amino acids for riboflavin production in A. gossypii is reported and this study opens a novel approach for the effective production of riboflavin in A. gossypii.

    Matched MeSH terms: Glutathione Reductase
  2. Luan Eng LI, Ng T, Wan WP, Ganesan J
    Br J Haematol, 1975 Nov;31(3):337-42.
    PMID: 1201246
    A study of glutathione reductase (GR) activity and its stimulation by flavin adenine dinucleotide (FAD) in erythrocytes of Malaysian newborns and adults of different racial groups showed that GR stimulation by FAD was greater than 20% in 50% of 866 newborns (57% of Malays, 55% of Indians and 41% of Chinese) and 54% of 274 adults (46% of Malays, 65% of Indians and 45% of Chinese). There was a significant negative correlation between GR activity and percentage FAD stimulation in both newborns and adults in all racial groups. Low GR activity and a high percentage FAD stimulation were more prevalent among parents of newborns with low GR activity than among parents of newborns with higher GR activity. Administration of riboflavin to mothers with low GR activity resulted in increased GR activity and a decreased percentage of FAD stimulation. None of the individuals examined had clear clinical manifestations of riboflavin deficiency. It is concluded that subclinical riboflavin deficiency leading to low GR activity is prevalent in Malaysia among adults and newborns, especially among Malays and Indians.
    Matched MeSH terms: Glutathione Reductase/blood*; Glutathione Reductase/metabolism
  3. Kato T, Azegami J, Kano M, El Enshasy HA, Park EY
    Mol Biotechnol, 2024 May;66(5):1144-1153.
    PMID: 38184809 DOI: 10.1007/s12033-023-01012-6
    AgHST1 and AgHST3 genes encode sirtuins that are NAD+-dependent protein deacetylases. According to previous reports, their disruption leads to the overproduction of riboflavin in Ashbya gossypii. In this study, we investigated the potential causes of riboflavin overproduction in the AgHST1Δ and AgHST3Δ mutant strains of A. gossypii. The generation of reactive oxygen species was increasd in the mutants compared to in WT. Additionally, membrane potential was lower in the mutants than in WT. The NAD+/NADH ratio in AgHST1Δ mutant strain was lower than that in WT; however, the NAD+/NADH ratio in AgHST3Δ was slightly higher than that in WT. AgHST1Δ mutant strain was more sensitive to high temperatures and hydroxyurea treatment than WT or AgHST3Δ. Expression of the AgGLR1 gene, encoding glutathione reductase, was substantially decreased in AgHST1Δ and AgHST3Δ mutant strains. The addition of N-acetyl-L-cysteine, an antioxidant, suppressed the riboflavin production in the mutants, indicating that it was induced by oxidative stress. Therefore, high oxidative stress resulting from the disruption of sirtuin genes induces riboflavin overproduction in AgHST1Δ and AgHST3Δ mutant strains. This study established that oxidative stress is an important trigger for riboflavin overproduction in sirtuin gene-disrupted mutant strains of A. gossypii and helped to elucidate the mechanism of riboflavin production in A. gossypii.
    Matched MeSH terms: Glutathione Reductase/genetics; Glutathione Reductase/metabolism
  4. Lee SK, Sirajudeen KN, Sundaram A, Zakaria R, Singh HJ
    Clin Exp Pharmacol Physiol, 2011 Dec;38(12):854-9.
    PMID: 21973174 DOI: 10.1111/j.1440-1681.2011.05624.x
    1. The hypotensive effect of cross-fostering in spontaneously hypertensive rats (SHR) is thought to involve adjustments in renal function. However, its association with renal anti-oxidant/oxidant balance during cross-fostering is not known. 2. The present study examined the effect of cross-fostering and in-fostering of 1-day-old offspring between SHR and Wistar-Kyoto (WKY) dams on renal anti-oxidant/oxidant status and systolic blood pressure (SBP). Renal anti-oxidant/oxidant status and SBP were determined in the offspring from 4-16 weeks of age. 3. Cross-fostered SHR had significantly lower SBP than in-fostered SHR at 6, 8 and 12 weeks, but not at 16 weeks (127 ± 1 vs 144 ± 2, 138 ± 1 vs 160 ± 1, 174 ± 2 vs 184 ± 2 and 199 ± 2 vs 194 ± 3 mmHg at 6, 8, 12 and 16 weeks, respectively). No differences in SBP were evident between cross-fostered and in-fostered WKY rats. There were no significant differences in levels of thiobarbituric acid-reactive substances (TBARS), protein carbonyl and total anti-oxidant status (TAS) or superoxide dismutase, catalase, glutathione peroxidase (GPx), glutathione S-transferase and glutathione reductase activity between cross-fostered and in-fostered SHR or WKY offspring. However, compared with WKY rats, catalase activity was higher at 6 and 16 weeks, TAS was higher at 16 weeks and GPx activity and TBARS were lower at 16 weeks in SHR. 4. It appears that cross-fostering of SHR offspring to WKY dams during the early postnatal period causes a transient delay in the rise in blood pressure in SHR and that this does not involve the renal anti-oxidant/oxidant system.
    Matched MeSH terms: Glutathione Reductase/analysis; Glutathione Reductase/metabolism*
  5. Ngah WZ, Shamaan NA, Said MH, Azhar MT
    Eur Arch Otorhinolaryngol, 1993;250(5):304-7.
    PMID: 8105826
    Plasma gamma-glutamyltranspeptidase (gamma-GT), glutathione peroxidase (GPx) and glutathione reductase (GR) activities were determined in normal and nasopharyngeal carcinoma (NPC) patients. No difference in enzyme activities was observed in the three major races of the Malaysian population, i.e. Malay, Chinese and Indian patients. However, plasma gamma-GT, erythrocyte glutathione S-transferase (GST) and GPx activities were significantly increased in all NPC patients, while GR activity remained unchanged. Patients with elevated plasma gamma-GT activities also had increased GST and GPx activities. Plasma gamma-GT and GPx activities were then found to be affected by treatment. Patients with plasma gamma-GT activity greater than 70 IU/l had very poor prognoses but patients with decreased gamma-GT activities were found to be in remission.
    Matched MeSH terms: Glutathione Reductase/blood*
  6. Tan CK, Ali ZM, Ismail I, Zainal Z
    ScientificWorldJournal, 2012;2012:474801.
    PMID: 22919322 DOI: 10.1100/2012/474801
    The objective of the present study was to simultaneously evaluate the effect of a postharvest treatment on the pepper's antioxidant content and its ability to retain its economical value during the postharvest period. The fruits were pretreated by modified atmosphere packaging (MAP) with or without treatment with 1-methylcyclopropene (1-MCP) before cold storage at 10°C. Changes in the levels of non-enzymatic antioxidants, including the total phenolic, ascorbic acid levels and the total glutathione level, as well as enzymatic antioxidants, including ascorbate peroxidase (APX), glutathione reductase (GR), and catalase (CAT), were determined. Both treatments successfully extended the shelf life of the fruit for up to 25 days, and a high level of antioxidant capacity was maintained throughout the storage period. However, 1-MCP treatment maintained the high antioxidant capacity for a longer period of time. The 1-MCP-treated peppers maintained high levels of phenolic content, a high reduced glutathione (GSH)/oxidised glutathione (GSSG) ratio, decreased levels of ascorbic acid and CAT activity, and increased levels of APX and GR compared with the peppers that were not treated with 1-MCP. The overall results suggested that a combination of 1-MCP and MAP was the most effective treatment for extending shelf life while retaining the nutritional benefits.
    Matched MeSH terms: Glutathione Reductase/metabolism
  7. Erejuwa OO, Sulaiman SA, Wahab MS, Sirajudeen KN, Salleh MS, Gurtu S
    Ann Endocrinol (Paris), 2010 Sep;71(4):291-6.
    PMID: 20398890 DOI: 10.1016/j.ando.2010.03.003
    Glucotoxicity contributes to beta-cell dysfunction through oxidative stress. Our previous study demonstrated that tualang honey ameliorated renal oxidative stress and produced hypoglycemic effect in streptozotocin (STZ)-induced diabetic rats. This present study investigated the hypothesis that hypoglycemic effect of tualang honey might partly be due to protection of pancreas against oxidative stress. Diabetes was induced by a single dose of STZ (60 mg/kg; ip). Diabetic rats were randomly divided into two groups and administered distilled water (0.5 ml/d) and tualang honey (1.0 g/kg/d). Similarly, two groups of non-diabetic rats received distilled water (0.5 ml/d) and tualang honey (1.0 g/kg/d). The animals were treated orally for 28 days. At the end of the treatment period, the honey-treated diabetic rats had significantly (p<0.05) reduced blood glucose levels [8.8 (5.8)mmol/L; median (interquartile range)] compared with the diabetic control rats [17.9 (2.6)mmol/L]. The pancreas of diabetic control rats showed significantly increased levels of malondialdehyde (MDA) and up-regulation of superoxide dismutase (SOD) and glutathione peroxidase (GPx) activities. Catalase (CAT) activity was significantly reduced while glutathione-S-transferase (GST) and glutathione reductase (GR) activities remained unchanged in the pancreas of diabetic rats. Tualang honey significantly (p<0.05) reduced elevated MDA levels. Honey treatment also restored SOD and CAT activities. These results suggest that hypoglycemic effect of tualang honey might be attributed to its antioxidative effect on the pancreas.
    Matched MeSH terms: Glutathione Reductase/analysis; Glutathione Reductase/metabolism
  8. Samie N, Muniandy S, Kanthimathi MS, Haerian BS, Azudin RE
    Sci Rep, 2016 Apr 13;6:24172.
    PMID: 27072064 DOI: 10.1038/srep24172
    The current study evaluates the cytotoxic mechanism of a novel piperazine derivate designated as PCC against human liver cancer cells. In this context, human liver cancer cell lines, SNU-475 and 243, human monocyte/macrophage cell line, CRL-9855, and human B lymphocyte cell line, CCL-156, were used to determine the IC50 of PCC using the standard MTT assay. PCC displayed a strong suppressive effect on SNU-475 and SNU-423 cells with an IC50 value of 6.98 ± 0.11 μg/ml and 7.76 ± 0.45 μg/ml respectively, after 24 h of treatment. Significant dipping in the mitochondrial membrane potential and elevation in the released of cytochrome c from the mitochondria indicated the induction of the intrinsic apoptosis pathway by PCC. Activation of this pathway was further evidenced by significant activation of caspase 3/7 and 9. PCC was also shown to activate the extrinsic pathways of apoptosis via activation of caspase-8 which is linked to the suppression of NF-ƙB translocation to the nucleus. Cell cycle arrest in the G1 phase was confirmed by flow cytometry and up-regulation of glutathione reductase expression was quantified by qPCR. This study suggests that PCC is a simultaneous inducer of intrinsic and extrinsic pathways of apoptosis in liver cancer cell lines.
    Matched MeSH terms: Glutathione Reductase
  9. Rahmat A, Wan Ngah WZ, Gapor A, Khalid BA
    Asia Pac J Clin Nutr, 1993 Sep;2(3):129-34.
    PMID: 24352144
    The effects of long-term administration of tocotrienol on hepatocarcinogenesis in rats induced by diethyl nitrosamine (DEN) and 2-acetylaminofluorene (AAF) were investigated by the determination of plasma and liver gamma-glutamyl transpeptidase (GGT), cytosolic glutathione reductase (GSSG-Rx), glutathione peroxidase (GSH-Px) and glutathione S-transferase (GST). Twenty-eight male Rattus norwegicus rats (120-160g) were divided according to treatments into four groups: control group, tocotrienol - supplemented diet group (30mg/kg food), DEN/AAF-treated group and DEN/AAF treated plus tocotrienol-supplemented-diet group (30mg/kg food). The rats were sacrificed after nine months. The results obtained indicated no difference in the morphology and histology of the livers of control and tocotrienol-treated rats. Greyish-white neoplastic nodules (two per liver) were found in all the DEN/ AAF treated rats (n-10) whereas only one nodule was found in one of the carcinogen treated rats receiving tocotrienol supplementation (n-6). Histological examination showed obvious cellular damage for both the DEN/AAF-treated rats and the tocotrienol-supplemented rats but were less severe in the latter. Treatment with DEN/AAF caused increases in GGT, GSH-Px, GST and GSSG-Rx activities when compared to controls. These increases were also observed when tocotrienol was supplemented with DEN/AAF but the increases were less when compared to the rats receiving DEN/AAF only.
    Matched MeSH terms: Glutathione Reductase
  10. Marcus SR, Chandrakala MV, Nadiger HA
    Asia Pac J Clin Nutr, 1998 Dec;7(3/4):201-5.
    PMID: 24393672
    The protection against ethanol-induced lipid peroxidation is rendered by antioxidants such as vitamin E and glutathione (GSH) interacting with each other and also functioning independently. A study of the levels of GSH and activities of glutathione peroxidase (GP), glutathione reductase (GR) and glutathione transferase (GST) in the cerebral cortex (CC), cerebellum (CB) and brain stem (BS) of vitamin E-supplemented and -deficient rats subjected to ethanol administration for 30 days was carried out. Chronic ethanol administration to vitamin E-supplemented rats elevated GP, GR and GST activities in the three regions and GSH levels in the CB. Chronic ethanol administration to vitamin E-deficient rats elevated GR activity in the three regions and GP activity in the CC and CB, decreased GST activity in the CC and CB, but did not alter GSH levels compared with normal rats subjected to chronic ethanol administration. The results indicate that vitamin E helps to maintain GSH levels to combat increased peroxidation while its absence has a deleterious effect.
    Matched MeSH terms: Glutathione Reductase
  11. Ezzat MI, Okba MM, Ahmed SH, El-Banna HA, Prince A, Mohamed SO, et al.
    PLoS One, 2020;15(1):e0226185.
    PMID: 31940365 DOI: 10.1371/journal.pone.0226185
    Phyllanthus niruri L. is a widespread tropical plant which is used in Ayurvedic system for liver and kidney ailments. The present study aims at specifying the most active hepatoprotective extract of P. niruri and applying a bio-guided protocol to identify the active compounds responsible for this effect. P. niruri aerial parts were extracted separately with water, 50%, 70% and 80% ethanol. The cytoprotective activity of the extracts was evaluated against CCl4-induced hepatotoxicity in clone-9 and Hepg2 cells. Bioassay-guided fractionation of the aqueous extract (AE) was accomplished for the isolation of the active compounds. Antioxidant activity was assessed using DPPH (1, 1-diphenyl-2-picrylhydrazyl) radical scavenging method and ferric reducing antioxidant power (FRAP). The in vivo hepatoprotective activity of AE was evaluated in CCl4-induced hepatotoxicity in rats at different doses after determination of its LD50. Pretreatment of clone-9 and Hepg2 with different concentrations of AE (1, 0.1, 0.01 mg/ml) had significantly reduced the levels of alanine aminotransferase (ALT) and aspartate aminotransferase (AST) against CCl4 injures, and restored the activity of the natural antioxidants; glutathione (GSH) and superoxide dismutase (SOD) towards normalization. Fractionation of AE gave four fractions (I-IV). Fractions I, II, and IV showed a significant in vitro hepatoprotective activity. Purification of I, II and IV yielded seven compounds; corilagin C1, isocorilagin C2, brevifolin C3, quercetin C4, kaempferol rhamnoside C5, gallic acid C6, and brevifolin carboxylic acid C7. Compounds C1, C2, C5, and C7 showed the highest (p< 0.001) hepatoprotective potency, while C3, C4, and C6 exhibited a moderate (p< 0.001) activity. The AE exhibited strong antioxidant DPPH (IC50 11.6 ± 2 μg/ml) and FRAP (79.352 ± 2.88 mM Ferrous equivalents) activity. In vivo administration of AE in rats (25, 50, 100 and 200 mg/kg) caused normalization of AST, ALT, alkaline phosphatase (ALP), lactate dehydrogenase (LDH), total cholesterol (TC), triglycyrides (TG), total bilirubin (TB), glucose, total proteins (TP), urea and creatinine levels which were elevated by CCl4. AE also decreased TNF-α, NF-KB, IL-6, IL-8, IL10 and COX-2 expression, and significantly antagonizes the effect of CCl4 on the antioxidant enzymes SOD, catalase (CAT), glutathione reductase (GR), and glutathione peroxidase (GSP). The histopathological study also supported the hepatoprotective effect of AE. P. niruri isolates exhibited a potent hepatoprotective activity against CCl4-induced hepatotoxicity in clone-9 and Hepg2 cell lines through reduction of lipid peroxidation and maintaining glutathione in its reduced form. This is attributable to their phenolic nature and hence antioxidative potential.
    Matched MeSH terms: Glutathione Reductase
  12. Ghulam Hasan Abbasi, Javaid Akhtar, Muhammad Anwar-ul-haq, Moazzam Jamil, Shafaqat Ali, Rafiq Ahmad, et al.
    Sains Malaysiana, 2016;45:177-184.
    Effects of NaCl salinity and cadmium on the anti-oxidative activity of enzymes like superoxide dismutase (SOD), catalase (CAT), peroxidase (POD), ascorbate peroxidase (APX), glutathione reductase (GR) and lipid peroxidation contents; malondialdehyde (MDA) were studied in two maize hybrids of different salt tolerance characteristics. An increase in the amount of lipid peroxidation indicated the oxidative stress induced by NaCl and Cd. The results also depicted that NaCl stress caused an increase in the activities of POD, SOD, CAT, APX and GR while cadmium stress increased the activities of POD, SOD and APX but showed no significant effect on CAT and GR in both the studied hybrids. The combined effect of salinity and cadmium on these parameters was higher than that of sole effect of either NaCl or Cd. It was also found that maize hybrid 26204 had better tolerance against both stresses with strong antioxidant system as compared to that of maize hybrid 8441. A comparison of the antioxidants and lipid peroxidation in two maize hybrids having varying level of NaCl and Cd stress tolerance corroborated the importance of reactive oxygen species (ROS) in defense against abiotic stresses.
    Matched MeSH terms: Glutathione Reductase
  13. Erejuwa OO, Sulaiman SA, Wahab MS, Salam SK, Salleh MS, Gurtu S
    Int J Mol Sci, 2011;12(1):829-43.
    PMID: 21340016 DOI: 10.3390/ijms12010829
    Hyperglycemia-induced increase in oxidative stress is implicated in diabetic complications. This study investigated the effect of metformin and/or glibenclamide in combination with honey on antioxidant enzymes and oxidative stress markers in the kidneys of streptozotocin (60 mg/kg; intraperitoneal)-induced diabetic rats. Diabetic rats were randomized into eight groups of five to seven rats and received distilled water (0.5 mL); honey (1.0 g/kg); metformin (100 mg/kg); metformin (100 mg/kg) and honey (1.0 g/kg); glibenclamide (0.6 mg/kg); glibenclamide (0.6 mg/kg) and honey (1.0 g/kg); metformin (100 mg/kg) and glibenclamide (0.6 mg/kg); or metformin (100 mg/kg), glibenclamide (0.6 mg/kg) and honey (1.0 g/kg) orally once daily for four weeks. Malondialdehyde (MDA) levels, glutathione peroxidase (GPx) and superoxide dismutase (SOD) activities were significantly elevated while catalase (CAT) activity, total antioxidant status (TAS), reduced glutathione (GSH), and GSH:oxidized glutathione (GSSG) ratio was significantly reduced in the diabetic kidneys. CAT, glutathione reductase (GR), TAS, and GSH remained significantly reduced in the diabetic rats treated with metformin and/or glibenclamide. In contrast, metformin or glibenclamide combined with honey significantly increased CAT, GR, TAS, and GSH. These results suggest that combination of honey with metformin or glibenclamide might offer additional antioxidant effect to these drugs. This might reduce oxidative stress-mediated damage in diabetic kidneys.
    Matched MeSH terms: Glutathione Reductase/metabolism
  14. Siew-Keah L, Sundaram A, Sirajudeen KN, Zakaria R, Singh HJ
    J Physiol Biochem, 2014 Mar;70(1):73-9.
    PMID: 23975651 DOI: 10.1007/s13105-013-0282-3
    Antenatal and postnatal environments are hypothesised to influence the development of hypertension. This study investigates the synergistic effect of cross-fostering and melatonin supplementation on the development of hypertension and renal glutathione system in spontaneously hypertensive rats (SHR). In one experiment, 1-day-old male SHR pups were fostered to either SHR (shr-SHR) or Wistar-Kyoto rats, (shr-WKY). In a concurrent experiment, SHR dams were given melatonin in drinking water (10 mg/kg body weight) from day 1 of pregnancy. Immediately following delivery, 1-day-old male pups were fostered either to SHR (Mel-shr-SHR) or WKY (Mel-shr-WKY) dams receiving melatonin supplementation until weaning on day 21. Upon weaning, melatonin supplementation was continued to these pups until the age of 16 weeks. Systolic blood pressures (SBP) were recorded at the age of 4, 6, 8, 12 and 16 weeks. Renal antioxidant activities were measured. Mean SBP of shr-WKY, Mel-shr-SHR and Mel-shr-WKY was significantly lower than that in shr-SHR until the age of 8 weeks. At 12 and 16 weeks of age, mean SBP of Mel-shr-WKY was lower than those in non-treated shr-SHR and shr-WKY pups but was not significantly different from that in Mel-shr-SHR. Renal glutathione peroxidase (GPx) and glutathione S-transferase (GST) activities were significantly higher in Mel-shr-SHR and Mel-shr-WKY at 16 weeks of age. It appears that combination of cross-fostering and melatonin supplementation exerts no synergistic effect on delaying the rise in blood pressure in SHR. The elevated GPx and GST activities are likely to be due to the effect of melatonin supplementation.
    Matched MeSH terms: Glutathione Reductase/metabolism
  15. Lee SK, Arunkumar S, Sirajudeen KN, Singh HJ
    J Physiol Biochem, 2010 Dec;66(4):321-7.
    PMID: 20680541 DOI: 10.1007/s13105-010-0038-2
    Glutathione (GSH) forms a part of the antioxidant system that plays a vital role in preventing oxidative stress, and an imbalance in the oxidant/antioxidant system has been linked to the pathogenesis of hypertension. The aim of this study was to investigate the status of the GSH system in the kidney of spontaneously hypertensive rats (SHR). Components of the GSH system, including glutathione peroxidase (GPx), glutathione reductase (GR), glutathione-S-transferase (GST), and total GSH content, were measured in the kidneys of 4, 6, 8, 12, and 16 weeks old SHR and Wistar-Kyoto (WKY) rats. Systolic blood pressure of SHR was significantly higher from the age of 6 weeks onwards compared with age-matched WKY rats. GPx activity in the SHR was significantly lower from the age of 8 weeks onwards when compared to that in age-matched WKY rats. No significant differences were evident in the GPx-1 protein abundance, and its relative mRNA levels, GR, GST activity, and total GSH content between SHR and age-matched WKY rats. The lower GPx activity suggests of an impairment of the GSH system in the SHR, which might be due to an abnormality in its protein rather than non-availability of a cofactor. Its role in the development of hypertension in SHR however remains unclear.
    Matched MeSH terms: Glutathione Reductase/metabolism
  16. Lie-Injo LE, Ganesan J, Clegg JB, Weatherall DJ
    Blood, 1974 Feb;43(2):251-9.
    PMID: 4810076
    Matched MeSH terms: Glutathione Reductase/metabolism
  17. Lie-Injo LE, Virik HK, Lim PW, Lie AK, Ganesan J
    Acta Haematol., 1977;58(3):152-60.
    PMID: 409030 DOI: 10.1159/000207822
    A study was carried out of 332 babies suffering from severe neonatal jaundice who were admitted to the General Hospital, Kuala Lumpar, Malaysia. Of the 332 neonates, 51 were premature and 281 were full-term babies, 178 (110 Chinese, 58 Malay, 9 Indian and 1 European-Pakistani) had bilirubin levels of 20 mg% or higher, requiring exchange blood transfusion. Of the Chinese neonates, 23 (20.9%) had G6PD deficiency, 9 (8.2%) had Hb Bart's and 2 (1.8%) had an abnormal haemoglobin, one Hb Q and one fetal variant. Among the Malay infants, 10 (17.2%) had G6PD deficiency, 7 (12.1%) had Hb Bart's and 10 (17.2%) had abnormal haemoglobins (four had Hb E trait, one had Hb K and Bart's in addition to Hb E, three had Hb CoSp with Hb Bart's, one had Hb Q and one Hb Tak). One of the nine Indian neonates had G6PD deficiency and one had Hb S trait. The one European-Pakistani baby was a carrier of Hb D Punjab. In addition to G6PD deficiency, abnormal haemoglobins seem to have contributed to the high incidence of severe neonatal jaundice in Malaysia. The mean activities of GP, GR and GR after stimulation with FAD were higher, while the mean activity of PK and mean level of reduced glutathione were lower than in normal cord bloods. The percent increase of GR after FAD stimulation was significantly lower; fewer in this group had increases above 20% than in normal cord blood. The possible significance of the findings is discussed.
    Matched MeSH terms: Glutathione Reductase/blood
  18. Abu Bakar MF, Mohamed M, Rahmat A, Burr SA, Fry JR
    Food Chem, 2013 Jan 1;136(1):18-25.
    PMID: 23017387 DOI: 10.1016/j.foodchem.2012.07.099
    This study was conducted to investigate the potential of bambangan (Mangifera pajang) fruit extracts in the protection against oxidative damage caused by tert-butyl hydroperoxide in the human hepatocellular HepG2 cell line. Proteins which might be involved in the cytoprotective mechanism were investigated using western blotting technique. Quercetin was used as a positive control. The results showed that only the kernel extract of M. pajang and quercetin displayed cytoprotective activity in HepG2 cells, with EC(50) values of 1.2 and 5.3μg/ml, respectively. Expression of quinone reductase, glutathione reductase and methionine sulfoxide reductase A proteins were significantly up-regulated by quercetin, suggesting their involvement in the cytoprotective activity of quercetin. However, expressions of only glutathione reductase and methionine sulfoxide reductase A proteins were significantly up-regulated by the kernel extract, again suggesting their involvement in the cytoprotective activity of bambangan kernel extract. Future study is needed to investigate the involvement of other cytoprotective proteins in the cytoprotection mechanism.
    Matched MeSH terms: Glutathione Reductase/genetics; Glutathione Reductase/metabolism
  19. Chan KW, Ismail M, Mohd Esa N, Mohamed Alitheen NB, Imam MU, Ooi J, et al.
    Oxid Med Cell Longev, 2018;2018:6742571.
    PMID: 29849908 DOI: 10.1155/2018/6742571
    The present study aimed to investigate the antioxidant and anti-inflammatory properties of defatted kenaf seed meal (DKSM) and its phenolic-saponin-rich extract (PSRE) in hypercholesterolemic rats. Hypercholesterolemia was induced using atherogenic diet feeding, and dietary interventions were conducted by incorporating DKSM (15% and 30%) or PSRE (at 2.3% and 4.6%, resp., equivalent to the total content of DKSM-phenolics and saponins in the DKSM groups) into the atherogenic diets. After ten weeks of intervention, serum total antioxidant capacities of hypercholesterolemic rats were significantly enhanced by DKSM and PSRE supplementation (p < 0.05). Similarly, DKSM and PSRE supplementation upregulated the hepatic mRNA expression of antioxidant genes (Nrf2, Sod1, Sod2, Gsr, and Gpx1) of hypercholesterolemic rats (p < 0.05), except for Gpx1 in the DKSM groups. The levels of circulating oxidized LDL and proinflammatory biomarkers were also markedly suppressed by DKSM and PSRE supplementation (p < 0.05). In aggregate, DKSM and PSRE attenuated the hypercholesterolemia-associated oxidative stress and systemic inflammation in rats, potentially by enhancement of hepatic endogenous antioxidant defense via activation of the Nrf2-ARE pathway, which may be contributed by the rich content of phenolics and saponins in DKSM and PSRE. Hence, DKSM and PSRE are prospective functional food ingredients for the potential mitigation of atherogenic risks in hypercholesterolemic individuals.
    Matched MeSH terms: Glutathione Reductase/genetics; Glutathione Reductase/metabolism
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links