Displaying publications 1 - 20 of 23 in total

Abstract:
Sort:
  1. Abdulla MH, Sattar MA, Abdullah NA, Johns EJ
    Pak J Pharm Sci, 2013 Jul;26(4):727-32.
    PMID: 23811449
    Effect of losartan was assessed on systemic haemodynamic responses to angiotensin II (Ang II) and adrenergic agonists in the model of high-fructose-fed rat. Twenty-four Sprague-Dawley (SD) rats were fed for 8 weeks either 20% fructose solution (FFR) or tap water (C) ad libitum. FFR or C group received losartan (10mg/kg/day p.o.) for 1 week at the end of feeding period (FFR-L and L) respectively, then the vasopressor responses to Ang II, noradrenaline (NA), phenylephrine (PE) and methoxamine (ME) were determined. The responses (%) to NA, PE, ME and Ang II in FFR were lower (P<0.05) than C (FFR vs. C; 22±2 vs. 32±2, 30±3 vs. 40±3, 9±1 vs. 13±1, 10±1 vs. 17±1) respectively. L group had blunted (P<0.05) responses to NA, PE, ME and Ang II compared to C (L vs. C; 26±2 vs. 32±2, 30±3 vs. 40±3, 7±0.7 vs. 13±1, 5±0.4 vs. 17±1) respectively. FFR-L group had aggravated (P<0.05) response to NA and ME, but blunted response to Ang II compared to FFR (FFR-L vs. FFR; 39±3 vs. 22±2, 11±1 vs. 9±1, 3±0.4 vs. 10±1) respectively. Fructose intake for 8 weeks results in smaller vasopressor response to adrenergic agonists and Ang II. Data also demonstrated an important role played by Ang II in the control of systemic haemodynamics in FFR and point to its interaction with adrenergic neurotransmission.
    Matched MeSH terms: Hemodynamics/drug effects*
  2. Rehman A, Rahman AR, Rasool AH, Naing NN
    Int J Clin Pharmacol Ther, 2001 Oct;39(10):423-30.
    PMID: 11680667
    To examine the dose response relationship between Ang II and pulse wave velocity (an index of arterial stiffness) in healthy human volunteers.
    Matched MeSH terms: Hemodynamics/drug effects*
  3. Sharma S, Ghani AA, Win N, Ahmad M
    Med J Malaysia, 1995 Dec;50(4):372-6.
    PMID: 8668059
    This prospective study was designed to compare the effectiveness of esmolol (either 100 mg or 200 mg) with a placebo in blunting the haemodynamic response to laryngoscopy and intubation. Seventy-five patients of ASA I or II scheduled for routine-surgery were selected and entered into a placebo-controlled study. Patients were randomly allocated to receive placebo, 100 mg or 200 mg of esmolol IV as part of an anaesthetic induction technique. There were no significant differences in the demographic distribution of the patients in the study. There was no statistical difference in the baseline heart rate (HR) and systolic blood pressure (SBP) between the three groups. One minute after the administration of the drug (prior to intubation) the differences in HR between the placebo group and both the 100 mg and 200 mg groups were significant (p < 0.05), and also at 1 min and 2 min following intubation for the 200 mg group (p < 0.05). In the 200 mg group there was a significant decrease, compared with placebo, in SBP at 1 min (p < 0.05) and at 2 min (p < 0.05) after intubation. In this study, adequate haemodynamic control following was obtained with the administration of 200 mg of esmolol.
    Matched MeSH terms: Hemodynamics/drug effects*
  4. Chang P, Koh YK, Geh SL, Soepadmo E, Goh SH, Wong AK
    J Ethnopharmacol, 1989 Apr;25(2):213-5.
    PMID: 2747255
    Matched MeSH terms: Hemodynamics/drug effects*
  5. NG KP, Wang CY
    Paediatr Anaesth, 1999;9(6):491-4.
    PMID: 10597551
    Intubating conditions under halothane anaesthesia aided with alfentanil 20 micrograms.kg-1 were compared with suxamethonium 2 mg.kg-1 in 40 children presenting for day dental procedures. The condition of vocal cords, jaw relaxation and presence of movement and coughing were scored to give the overall intubating conditions. Successful intubation was achieved in 100% of the suxamethonium group and 94.7% of the alfentanil group. The cardiovascular response to intubation was attenuated in the alfentanil group. Some 43.7% of those receiving suxamethonium developed myalgia the day after surgery compared with 0% in the alfentanil group (P < 0.01).
    Matched MeSH terms: Hemodynamics/drug effects
  6. Marlini M, Mabuchi A, Mallard BL, Hairulhisyam N, Akashi-Takamura S, Harper JL, et al.
    Exp Physiol, 2016 12 01;101(12):1492-1505.
    PMID: 27634415 DOI: 10.1113/EP085727
    NEW FINDINGS: What is the central question of this study? The liver regenerative process is complex and involves a sequence of signalling events, but the possible involvement of structural and haemodynamic changes in vivo during this process has never been explored. What is the main finding and its importance? Normal sinusoidal blood flow and velocity are crucial for a normal regenerative response, and delays in these haemodynamic events resulted in impaired liver regeneration in lipopolysaccharide-insensitive, C3H/HeJ mice. Toll-like receptor 4 signalling is required for restoration of normal liver architecture during the liver regenerative process. Liver regeneration is delayed in mice with a defective Toll-like receptor 4 (TLR4; C3H/HeJ mice) but is normal in TLR4 knockouts (TLR4-/- ). Here, we investigated the possible involvement of structural and haemodynamic changes in vivo in the underlying mechanism. In lipopolysaccharide-sensitive (C3H/HeN and C57BL/6) and lipopolysaccharide-insensitive (C3H/HeJ and TLR4-/- ) mice, a 70% partial hepatectomy (PH) was performed under inhalational anaesthesia. At days 3 and 7 after PH, the hepatic microcirculation was interrogated using intravital microscopy. Delayed liver regeneration was confirmed in C3H/HeJ, but not in C3H/HeN, C57BL/6 (WT) or TLR4-/- mice by liver weight-to-body-weight ratio, the percentage of proliferating cell nuclear antigen (PCNA)-positive cells and mitotic index data. At day 3 after PH, sinusoidal red blood cell velocity increased by 100% in C3H/HeN mice, but by only 40% in C3H/HeJ mice. Estimated sinusoidal blood flow was significantly higher at day 7 after PH in C3H/HeN than in C3H/HeJ mice. The hepatic cord width was significantly larger in C3H/HeN than in C3H/HeJ mice at day 3 and it was significantly larger in TLR4-/- than in C57BL/6 WT mice at day 7 after PH. Hepatocyte nucleus density and functional sinusoidal density was significantly reduced at days 3 and 7 after PH in all mouse strains compared with their zero-time controls. Functional sinusoidal density was significantly lower in C3H/HeJ compared with C3H/HeN mice at day 7 after PH. The present study indicates that altered sinusoidal blood flow and velocity in C3H/HeJ mice may contribute to the observed delay in the regenerative response in these mice. In addition, restoration of normal liver architecture may be delayed in TLR4-/- mice.
    Matched MeSH terms: Hemodynamics/drug effects
  7. Tan YC, Abdul Sattar M, Ahmeda AF, Abdul Karim Khan N, Murugaiyah V, Ahmad A, et al.
    PLoS One, 2020;15(4):e0231472.
    PMID: 32298299 DOI: 10.1371/journal.pone.0231472
    Oxidative stress is involved in the pathogenesis of a number of diseases including hypertension and renal failure. There is enhanced expression of nicotinamide adenine dinucleotide (NADPH oxidase) and therefore production of hydrogen peroxide (H2O2) during renal disease progression. This study investigated the effect of apocynin, an NADPH oxidase inhibitor and catalase, an H2O2 scavenger on Cyclosporine A (CsA) nephrotoxicity in Wistar-Kyoto rats. Rats received CsA (25mg/kg/day via gavage) and were assigned to vehicle, apocynin (2.5mmol/L p.o.), catalase (10,000U/kg/day i.p.) or apocynin plus catalase for 14 days. Renal functional and hemodynamic parameters were measured every week, and kidneys were harvested at the end of the study for histological and NADPH oxidase 4 (NOX4) assessment. Oxidative stress markers and blood urea nitrogen (BUN) were measured. CsA rats had higher plasma malondialdehyde (by 340%) and BUN (by 125%), but lower superoxide dismutase and total antioxidant capacity (by 40%, all P<0.05) compared to control. CsA increased blood pressure (by 46mmHg) and decreased creatinine clearance (by 49%, all P<0.05). Treatment of CsA rats with apocynin, catalase, and their combination decreased blood pressure to near control values (all P<0.05). NOX4 mRNA activity was higher in the renal tissue of CsA rats by approximately 63% (P<0.05) compared to controls but was reduced in apocynin (by 64%), catalase (by 33%) and combined treatment with apocynin and catalase (by 84%) compared to untreated CsA rats. Treatment of CsA rats with apocynin, catalase, and their combination prevented hypertension and restored renal functional parameters and tissue Nox4 expression in this model. NADPH inhibition and H2O2 scavenging is an important therapeutic strategy during CsA nephrotoxicity and hypertension.
    Matched MeSH terms: Hemodynamics/drug effects
  8. Rehman A, Rahman AR, Rasool AH
    J Hum Hypertens, 2002 Apr;16(4):261-6.
    PMID: 11967720
    The objective of this study was to examine the effect of angiotensin II (Ang II) and angiotensin II type 1 (AT(1)) receptor blockade on pulse wave velocity (PWV) in healthy humans. We studied nine young male volunteers in a double-blind randomised crossover design. Carotid-femoral PWV (an index of arterial stiffness) was measured by using a Complior machine. Subjects were previously treated for 3 days with once-daily dose of either a placebo or valsartan 80 mg. On the third day, they were infused with either placebo or 5 ng/kg/min of Ang II over 30 min. Subjects thus received placebo capsule + placebo infusion (P), valsartan + placebo infusion (V), placebo + Ang II infusion (A), and valsartan + Ang II infusion (VA) combinations. Heart rate (HR), blood pressure and PWV were recorded at baseline and then every 10 min during infusion and once after the end of infusion. There were significant increases in systolic blood pressure (SBP), diastolic blood pressure (DBP) and mean arterial pressure (MAP) with A compared with P (P = 0.002, P = 0.002, P = 0.001 respectively). These rises in blood pressure were completely blocked by valsartan. A significant rise in PWV by A was seen compared with P (8.38 +/- 0.24 vs 7.48 +/- 0.24 m/sec, P = 0.013) and was completely blocked by valsartan; VA compared with P (7.27 +/- 0.24 vs 7.48 +/- 0.24 m/sec, P = NS). Multiple linear regression analysis showed that blockade of Ang II induced increase in blood pressure by valsartan contributed to only 30% of the total reduction in Ang II induced rise in PWV (R(2) = 0.306). The conclusions were that valsartan completely blocks the effect of Ang II on PWV. The effect of Ang II on PWV is mediated through AT(1)receptors. Reduction in PWV by Ang II antagonist is not fully explained by its pressure lowering effect of Ang II and may be partially independent of its effect on blood pressure.
    Matched MeSH terms: Hemodynamics/drug effects
  9. Rahman AR, Lang CC, Struthers AD
    Int J Clin Pharmacol Ther, 1995 Jul;33(7):404-9.
    PMID: 7582398
    Increasing animal evidence support an important facilitatory interaction between angiotensin II and norepinephrine within the kidney. This angiotensin II/norepinephrine interaction was investigated in man by examining the effect of enalapril pretreatment (5 mg for 5 days) on the renal response to a low non-pressor dose of intravenous tyramine 4 micrograms/kg/min for 120 min in 8 healthy subjects undergoing water diuresis. Tyramine is an indirect sympathomimetic agent which causes neuronal release of norepinephrine. Enalapril and tyramine, alone and in combination, had no effect on glomerular filtration, effective renal plasma flow or sodium excretion. Tyramine caused a significant increase in urinary flow rate (p < 0.05) but this was not influenced by enalapril pretreatment. The lack of effect of enalapril on the renal response to tyramine contrasts with a previous study which examined the effect of enalapril on the renal response to circulating norepinephrine. This may suggest that enalapril affect renal function only when there is renal vasoconstriction (as with norepinephrine) and not when renal blood flow is unchanged (as with tyramine).
    Matched MeSH terms: Hemodynamics/drug effects
  10. Nisa K, Lim SY, Osuga T, Yokoyama N, Tamura M, Nagata N, et al.
    J Vet Med Sci, 2018 Mar 24;80(3):453-459.
    PMID: 29398670 DOI: 10.1292/jvms.17-0525
    Quantitative contrast-enhanced ultrasonography (CEUS) enables non-invasive and objective evaluation of intestinal perfusion by quantifying the intensity of enhancement on the intestine after microbubble contrast administration. During CEUS scanning, sedation is sometimes necessary to maintain animal cooperation. Nevertheless, the effect of sedative administration on the canine intestinal CEUS is unknown. This study aimed to investigate the effect of sedation with a combination of butorphanol and midazolam on the duodenal CEUS-derived perfusion parameters of healthy dogs. For this purpose, duodenum was imaged following contrast administration (Sonazoid®, 0.01 ml/kg) in six healthy beagles before and after intravenous injection of a combination of butorphanol (0.2 mg/kg) and midazolam (0.1 mg/kg). Furthermore, hemodynamic parameters including blood pressure and heart rate were recorded during the procedure. Five CEUS derived perfusion parameters including time-to-peak (TTP), peak intensity (PI), area under the curve (AUC), wash-in and wash-out rates (WiR and WoR, respectively) before and after sedation were statistically compared. The result showed that no significant change was detected in any of perfusion parameters. Systolic and mean arterial pressures significantly reduced after sedative administration, but diastolic arterial pressure and heart rate did not significantly change. Moreover, no significant partial correlation was observed between perfusion parameters and hemodynamic parameters. Thus, we concluded that the combination did not cause significant influence in duodenal CEUS perfusion parameters and could be a good option for sedation prior to duodenal CEUS in debilitated dogs.
    Matched MeSH terms: Hemodynamics/drug effects
  11. Mohtar S, Hui TWC, Irwin MG
    Paediatr Anaesth, 2018 11;28(11):1035-1042.
    PMID: 30281181 DOI: 10.1111/pan.13502
    BACKGROUND: Video-assisted thoracoscopic surgery has dramatically increased over the last decade because of both medical and cosmetic benefits. Anesthesia for video-assisted thoracoscopic surgery in small children is more challenging compared to adults due to the considerable problems posed by small airway dimensions and ventilation. The optimal technique for one-lung ventilation has yet to be established and the use of remifentanil infusion in this setting is not well described.

    AIMS: This study investigated the use of extraluminal bronchial blocker placement for one-lung ventilation and the effect of infusion of remifentanil in infants and small children undergoing video-assisted thoracoscopic surgery.

    METHODS: We retrospectively reviewed the technique of one-lung ventilation and the hemodynamic effects of remifentanil infusion in 31 small children during elective video-assisted thoracoscopic surgery for congenital lung lesions under anesthesia with sevoflurane or isoflurane, oxygen, and air. Patients' heart rate, blood pressure, and endtidal carbon dioxide at baseline (after induction of anesthesia), immediately after one-lung ventilation, during carbon dioxide insufflation, and at the end of one-lung ventilation were extracted from the database and analyzed. The use of vasopressors or dexmedetomidine was also recorded and analyzed.

    RESULTS: Extraluminal placement of a bronchial blocker alongside the tracheal tube was successfully performed in 90.3% of cases (28 patients) without any serious complications or arterial oxygen desaturation. There was no significant rise in blood pressure or heart rate even with the rise of endtidal carbon dioxide concentration during video-assisted thoracoscopic surgery. In 58% of patients (18 patients), phenylephrine was administered to maintain the blood pressure within 20% of the baseline value. There was no significant change in the heart rate of all patients at each time point.

    CONCLUSION: One-lung ventilation with an extraluminal parallel blocker was used effectively in this series of young children undergoing thoracoscopic excision of congenital pulmonary lesions. Remifentanil infusion attenuated surgical stress effectively in infants and small children undergoing video-assisted thoracoscopic surgery.

    Matched MeSH terms: Hemodynamics/drug effects
  12. Apprill PG, Ashton J, Guerrero J, Glas-Greenwalt P, Buja LM, Willerson JT
    Am Heart J, 1987 Apr;113(4):898-906.
    PMID: 3565240
    The potential use of ancrod, a purified isolate from the venom of the Malaysian pit viper, Agkistrodon rhodostoma, in decreasing the frequency of cyclic flow variations in severely stenosed canine coronary arteries and causing thrombolysis of an acute coronary thrombus induced by a copper coil was evaluated. Open-chest, anesthetized dogs were used. Ancrod was given intravenously (8 U/kg) over 1 hour and caused a significant reduction in the frequency of cyclic flow variations (5.8 +/- 0.7 to 3.6 +/- 0.8 cyclic flow variations per 30 minutes, p less than 0.05), whereas control animals failed to decrease the frequency of their cyclic flow variations over the same time period (5.3 +/- 0.3 to 5.0 +/- 0.4 cyclic flow variations per 30-minute period). Twenty-seven dogs had a coronary thrombus induced by a copper coil positioned directly in a major coronary artery; of these, four died of ventricular fibrillation prior to treatment, eight received an infusion of saline and showed no thrombolysis over 5 hours, and three died of ventricular fibrillation during the initial part of an intravenous infusion of ancrod. The remaining 12 dogs received ancrod intravenously (16 U/kg); six demonstrated lysis of the coronary thrombus (mean time to lysis, 65 +/- 20 minutes). The concentrations of ancrod used in these studies produced a severe decrease in systemic fibrinogen concentration and a significant decrease in the inhibitor of plasminogen activator levels. Thus, ancrod decreases the frequency of cyclic flow variations in stenosed canine coronary arteries and may cause coronary thrombolysis in approximately 50% of animals within 65 +/- 20 minutes of its intravenous administration.
    Matched MeSH terms: Hemodynamics/drug effects
  13. Ahmad FU, Sattar MA, Rathore HA, Tan YC, Akhtar S, Jin OH, et al.
    Ren Fail, 2014 May;36(4):598-605.
    PMID: 24502512 DOI: 10.3109/0886022X.2014.882218
    Oxidative stress and suppressed H2S production lead to increased renal vascular resistance, disturbed glomerular hemodynamics, and abnormal renal sodium and water handling, contribute to the pathogenesis and maintenance of essential hypertension in man and the spontaneously hypertensive rat. This study investigated the impact of H2S and tempol alone and in combination on blood pressure and renal hemodynamics and excretory functions in the SHR. Groups of WKY rats or SHR (n=6) were treated for 4 weeks either as controls or received NaHS (SHR+NaHS), tempol (SHR+Tempol), or NaHS plus tempol (SHR+NaHS +Tempol). Metabolic studies were performed on days 0, 14, and 28, thereafter animals were anaesthetized to measure renal hemodynamics and plasma oxidative and antioxidant markers. SHR control rats had higher mean arterial blood pressure (140.0 ± 2 vs. 100.0 ± 3 mmHg), lower plasma and urinary H2S, creatinine clearance, urine flow rate and urinary sodium excretion, and oxidative stress compared to WKY (all p<0.05). Treatment either with NaHS or with tempol alone decreased blood pressure and oxidative stress and improved renal hemodynamic and excretory function compared to untreated SHR. Combined NaHS and tempol therapy in SHRs caused larger decreases in blood pressure (∼20-22% vs. ∼11-15% and ∼10-14%), increases in creatinine clearance, urinary sodium excretion and fractional sodium excretion and up-regulated the antioxidant status compared to each agent alone (all p<0.05). These findings demonstrated that H2S and tempol together resulted in greater reductions in blood pressure and normalization of kidney function compared with either compound alone.
    Matched MeSH terms: Hemodynamics/drug effects
  14. Chia TY, Sattar MA, Abdulla MH, Rathore HA, Ahmad Fu, Kaur G, et al.
    Ren Fail, 2013 Aug;35(7):978-88.
    PMID: 23822648 DOI: 10.3109/0886022X.2013.809563
    This study investigated the effects of tempol, a superoxide dismutase (SOD) mimetic and L-NAME, a nitric oxide (NO) synthase inhibitor on the renal function and hemodynamics in cyclosporine A (CsA) induced renal insufficiency rats. Male Sprague-Dawley rats were treated with either vehicle (C), tempol (T, 1 mmol/L in drinking fluid), L-NAME (L, 1 mmol/L in drinking fluid), CsA (Cs, 25 mg/kg/day via gavage), CsA plus tempol (TCs), CsA plus L-NAME (LCs) or CsA plus a combination of tempol and L-NAME (TLCs) for 21 consecutive days. At the end of treatment regimen, the renal responses to noradrenaline (NA), phenylephrine (PE), methoxamine and angiotensin II (Ang II) were determined. Cs and LCs rats had lower creatinine clearance (0.7 ± 0.1 and 0.6 ± 0.5 vs. 1.3 ± 0.2 mL/min/kg) and fractional excretion of sodium (0.12 ± 0.02 and 0.17 ± 0.01 vs. 0.67 ± 0.04%) but higher systolic blood pressure (145 ± 2 and 178 ± 4 vs. 116 ± 2) compared to the control (all p 
    Matched MeSH terms: Hemodynamics/drug effects*
  15. Abdulla MH, Sattar MA, Johns EJ, Abdullah NA, Hye Khan MA, Rathore HA
    Br J Nutr, 2012 Jan;107(2):218-28.
    PMID: 21733307 DOI: 10.1017/S0007114511002716
    The present study explored the hypothesis that a prolonged 8 weeks exposure to a high fructose intake suppresses adrenergic and angiotensin II (Ang II)-mediated vasoconstriction and is associated with a higher contribution of α1D-adrenoceptors. A total of thirty-two Sprague-Dawley rats received either 20 % fructose solution (FFR) or tap water (control, C) to drink ad libitum for 8 weeks. Metabolic and haemodynamic parameters were assessed weekly. The renal cortical vasoconstrictor responses to noradrenaline (NA), phenylephrine (PE), methoxamine (ME) and Ang II were determined in the presence and absence of BMY7378 (α1D-adrenoceptor antagonist). FFR had increased blood pressure, plasma levels of glucose, TAG and insulin. FFR expressed reduced renal vascular responses to adrenergic agonists and Ang II (NA: 50 %, PE: 50 %, ME, 65 %, Ang II: 54 %). Furthermore in the C group, the magnitude of the renal cortical vasoconstriction to all agonists was blunted in the presence of the low or high dose of BMY7378 (NA: 30 and 31 %, PE: 23 and 33 %, ME: 19 and 44 %, Ang II: 53 and 77 %), respectively, while in the FFR, vasoconstriction was enhanced to adrenergic agonists and reduced to Ang II (NA: 8 and 83 %, PE: 55 %, ME, 2 and 177 %, Ang II: 61 and 31 %). Chronic high fructose intake blunts vascular sensitivity to adrenergic agonists and Ang II. Moreover, blocking of the α1D-adrenoceptor subtype results in enhancement of renal vasoconstriction to adrenergic agonists, suggesting an inhibitory action of α1D-adrenoceptors in the FFR. α1D-Adrenoceptors buffer the AT1-receptor response in the renal vasculature of normal rats and fructose feeding suppressed this interaction.
    Matched MeSH terms: Hemodynamics/drug effects
  16. Abdulla MH, Sattar MA, Johns EJ, Abdullah NA, Khan MA
    Eur J Nutr, 2011 Dec;50(8):689-97.
    PMID: 21373947 DOI: 10.1007/s00394-011-0180-9
    AIM: To explore the hypothesis that high fructose intake results in a higher functional contribution of α1A-adrenoceptors and blunts the adrenergically and angiotensin II (Ang II)-induced renal vasoconstriction.

    METHODS: Twelve Sprague-Dawley rats received either 20% fructose solution [FFR] or tap water [C] to drink ad libitum for 8 weeks. The renal vasoconstrictor response to noradrenaline (NA), phenylephrine (PE), methoxamine (ME) and Ang II was determined in the presence and absence of 5-methylurapidil (5-MU) (α1A-adrenoceptor antagonist) in a three-phase experiment (pre-drug, low- and high-dose 5-MU). Data, mean ± SEM were analysed by ANOVA or Student's unpaired t-test with significance at P < 0.05.

    RESULTS: FFR exhibited insulin resistance (HOMA index), hypertension and significant increases in plasma levels of glucose and insulin. All agonists caused dose-related reductions in cortical blood perfusion that were larger in C than in FFR while the magnitudes of the responses were progressively reduced with increasing doses of 5-MU in both C and FFR. The degree of 5-MU attenuation of the renal cortical vasoconstriction due to NA, ME and Ang II was significantly greater in the FFR compared to C.

    CONCLUSIONS: Fructose intake for 8 weeks results in smaller vascular response to adrenergic agonists and Ang II. The α1A-adrenoceptor subtype is the functional subtype that mediates renal cortical vasoconstriction in control rats, and this contribution becomes higher due to fructose feeding.

    Matched MeSH terms: Hemodynamics/drug effects*
  17. Abdulla MH, Sattar MA, Abdullah NA, Hazim AI, Anand Swarup KR, Rathore HA, et al.
    Auton Autacoid Pharmacol, 2008 Oct;28(4):95-101.
    PMID: 18778332 DOI: 10.1111/j.1474-8673.2008.00422.x
    1. This study was undertaken to elucidate the effects of inhibiting the renin-angiotensin system (RAS) with losartan, and acute unilateral renal denervation on renal haemodynamic responses to intrarenal administration of vasoconstrictor doses of dopamine and vasodilator doses of isoprenaline in Wistar-Kyoto (WKY) and spontaneously hypertensive rats (SHR). 2. Acute unilateral renal denervation of the left kidney in rats was confirmed by a drop in the renal vasoconstrictor response to renal nerve stimulation (P < 0.05) along with diuresis and natriuresis. Rats were pretreated with losartan for 7 days and thereafter animals fasted overnight were anaesthetized (sodium pentobarbitone, 60 mg/kg i.p.) and acute renal haemodynamic responses studied. 3. Dose-response curves were constructed for dopamine and isoprenaline that induced falls or increases in renal blood flow, respectively. It was observed that renal vascular responses were greater in the denervated as compared with rats with intact renal nerves (all P < 0.05). Dopamine-induced renal vasoconstrictor responses were markedly lower in losartan-treated denervated WKY and SHR compared with their untreated counterparts (all P < 0.05). It was also observed that in losartan-treated and denervated WKY rats the vasodilatory responses to isoprenaline were markedly lower compared with untreated rats (all P < 0.05). However, in SHR, under the same conditions, there was no difference in the renal response to isoprenaline whether or not rats were treated with losartan (P > 0.05). 4. The data obtained showed that the renal vasoconstrictor effect of dopamine depends on intact renal nerves and RAS in WKY and SHR. Isoprenaline responses were likewise sensitive to renal denervation and RAS inhibition in WKY rats but not SHRs. Our observations reveal a possible relationship between renal AT(1) receptors and alpha(1)-adrenoceptors in WKY and SHR. There is also evidence to suggest an interaction between renal beta-adrenoceptors and AT(1) receptors in WKY rats.
    Matched MeSH terms: Hemodynamics/drug effects
  18. Abdulla MH, Sattar MA, Salman IM, Abdullah NA, Ameer OZ, Khan MA, et al.
    Auton Autacoid Pharmacol, 2008 Apr-Jul;28(2-3):87-94.
    PMID: 18598290 DOI: 10.1111/j.1474-8673.2008.00421.x
    1 This study was undertaken to characterize the renal responses to acute unilateral renal denervation in anaesthetized spontaneously hypertensive rats (SHR) by examining the effect of acute unilateral renal denervation on the renal hemodynamic responses to a set of vasoactive agents and renal nerve stimulation. 2 Twenty-four male SHR rats underwent acute unilateral renal denervation and the denervation was confirmed by significant drop (P < 0.05) in renal vasoconstrictor response to renal nerve stimulation along with marked diuresis and natriuresis following denervation. After 7 days treatment with losartan, the overnight fasted rats were anaesthetized (sodium pentobarbitone, 60 mg kg(-1) i.p.) and renal vasoconstrictor experiments were performed. The changes in the renal vasoconstrictor responses were determined in terms of reductions in renal blood flow caused by renal nerve stimulation or intrarenal administration of noradrenaline, phenylephrine, methoxamine and angiotensin II. 3 The data showed that there was significantly (all P < 0.05) increased renal vascular responsiveness to the vasoactive agents in denervated rats compared to those with intact renal nerves. In losartan-treated denervated SHR rats, there were significant (all P < 0.05) reductions in the renal vasoconstrictor responses to neural stimuli and vasoactive agents as compared with that of untreated denervated SHR rats. 4 The data obtained in denervated rats suggested an enhanced sensitivity of the alpha(1)-adrenoceptors to adrenergic agonists and possible increase of AT(1) receptors functionality in the renal vasculature of these rats. These data also suggested a possible interaction between sympathetic nervous system and renin-angiotensin system in terms of a crosstalk relationship between renal AT(1) and alpha(1)-adrenoceptor subtypes.
    Matched MeSH terms: Hemodynamics/drug effects
  19. Hye Khan MA, Abdul Sattar M, Abdullah NA, Johns EJ
    Exp. Toxicol. Pathol., 2007 Nov;59(3-4):253-60.
    PMID: 17764917
    The pathogenesis of cisplatin-induced renal failure is related to reduced renal blood flow due to severe tubular damage and enhanced renovascular resistance. It is also known that alpha(1)-adrenoceptors, the major subtype of alpha-adrenoceptors in renal vasculature play the pivotal role in regulating renal hemodynamics. With this background, we have hypothesized that the altered renal hemodynamics and enhanced renovascular resistance in cisplatin-induced renal failure might be caused by the altered alpha-adrenergic responsiveness with a possible involvement of alpha(1)-adrenoceptors in the renal vasculature. In a unique experimental approach with anesthetized rats, this study has therefore examined if there is any shift in the renovascular responsiveness to renal nerve stimulation and a series of alpha-adrenergic agonists in Wistar Kyoto (WKY) and spontaneously hypertensive (SHR) rats with cisplatin-induced renal failure in comparison with their body weight-matched normal controls. Thirty-two male rats of both WKY (n=16) and SHR (n=16) origin with body weight 236+/-7.9 g received cisplatin (5mg/kg i.p.). The renal failure was confirmed in terms of significantly reduced renal blood flow, reduced creatinine clearance, increased fractional excretion of sodium, increased kidney index (all P<0.05) and tubular damage. After 7 days of cisplatin, the overnight fasted rats were anesthetized (sodium pentobarbitone, 60 mg/kg i.p.) and renal vasoconstrictor experiments were done. The changes in the vasoconstrictor responses were determined in terms of reductions in renal blood flow caused by electrical renal nerve stimulation or intrarenal administration of noradrenaline, phenylephrine and methoxamine. It was observed that in the cisplatin-treated renal failure WKY and SHR rats there were significant (all P<0.05) reductions in the renal blood flow along with significantly (P<0.05) higher renal adrenergic responsiveness as compared with their non-renal failure controls. The data showed that in the renal failure WKY and SHR rats, the altered renal hemodynamics might be caused by an augmented renal adrenergic responsiveness. The results obtained further led us to suggest that the augmented renal adrenergic responsiveness in the cisplatin-induced renal failure rats were possibly mediated by the alpha(1)-adrenoceptors.
    Matched MeSH terms: Hemodynamics/drug effects*
  20. Afzal S, Sattar MA, Johns EJ, Abdulla MH, Akhtar S, Hashmi F, et al.
    J Physiol Biochem, 2016 Dec;72(4):593-604.
    PMID: 27405250
    Adiponectin exerts vasodilatory effects. Irbesartan, an angiotensin receptor blocker, possesses partial peroxisome proliferator-activated receptor gamma (PPAR-γ) agonist activity and increases circulating adiponectin. This study explored the effect of irbesartan alone and in combination with adiponectin on blood pressure, renal hemodynamic excretory function, and vasoactive responses to angiotensin II and adrenergic agonists in spontaneously hypertensive rat (SHR). Irbesartan was given orally (30 mg/kg/day) for 28 days and adiponectin intraperitoneally (2.5 μg/kg/day) for last 7 days. Groups of SHR received either irbesartan or adiponectin or in combination. A group of Wistar Kyoto rats (WKY) served as controls. Metabolic data and plasma samples were taken on days 0, 21, and 28. In acute studies, the renal vasoconstrictor actions of angiotensin II (ANGII), noradrenaline (NA), phenylephrine (PE), and methoxamine (ME) were determined. SHR control rats had a higher mean blood pressure than the WKY (132 ± 7 vs. 98 ± 2 mmHg), lower plasma and urinary adiponectin, creatinine clearance, urine flow rate and sodium excretion, and oxidative stress markers compared to WKY (all P drug treatments and to a greater extent by combined treatment. Responses to intrarenal administration of NA, PE, ME, and ANGII were larger in SHR (P 
    Matched MeSH terms: Hemodynamics/drug effects
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links